

aurecon

Project: Kerosene Vale Ash Dam and Dry Ash Repository

KVAR Stage 2 Water Quality Assessment February, 2012 to March, 2013 Reference: 208562 Prepared for: EnergyAustralia NSW Revision: 6 16 January 2014

Document Control Record

Document prepared by:

Aurecon Australia Pty Ltd ABN 54 005 139 873 Level 2, 116 Military Road Neutral Bay NSW 2089 PO Box 538

Neutral Bay NSW 2089 Australia

- T +61 2 9465 5599
- **F** +61 2 9465 5598
- E sydney@aurecongroup.com
- W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Document control dure									
Repo	ort Title	KVAR Stage 2 Water Quality Assessment February, 2012 to March, 2013							
Docu	iment ID		Project Numb	er	208562				
File F	Path	P:\ENERGY\7053\Mount Piper & Wang WQ 2440\Wang\KVAD Stage 2 seepage Diversion effects 2012 &2013\2013 Report\KVAD Stage 2A Water Quality Assessment 2013 draft Report.docx							
Clien	t	EnergyAustralia NSW	Client Contact		Nino Di Fa	lco			
Rev	Date	Revision Details/Status	Prepared by	Author	Verifier	Approver			
0	9 September 2013	Initial Draft	BRH	BRH	PF	GM			
1	29 November, 2013	Draft for Hydrogeology Internal Review	BRH	BRH	IF	GM			
2	3 December, 2013	Draft for Internal Review	BRH	BRH	PF	GM			
3	14 December 2013	Draft for approval	BRH	BRH	PF	GM			
4	18 December 2013	Draft with additional comments	BRH	BRH	PF	GM			
5	5 20 December 2013 Draft for EnergyAustralia NSW Comments		BRH	BRH	PF	GM			
6 16 January 2014		Final Report	BRH	BRH	PF	GM			
Current Revision 6									

Contents

1.	Intro	duction		1
	1.1	Backgi	ound	1
	1.2	Aims a	nd Objectives	4
	1.3	Previo	us Report	4
	1.4	Scope		5
	1.5	Inform	ation provided by EnergyAustralia NSW	5
	1.6	Data C	luality	6
2.	Surfa	ace and	Groundwater Quality Monitoring	8
	2.1	Monito	ring Design for Differentiation of Water Quality Sources	8
		2.1.1	Groundwater Monitoring	8
		2.1.2	Surface Water Monitoring	8
		2.1.3	Sampling in Upper Sawyers Swamp Creek	9
		2.1.4	Other data considerations	10
	2.2	KVAR	Site Monitoring and Runoff Management	10
	2.3	Tracer	s for Dry Ash leachates	11
	2.4	Ground	dwater Levels	11
	2.5	Climati	ic Conditions	12
	2.6	Metho	ds	12
	2.7	Guidel	ines	12
		2.7.1	Receiving Waters	15
		2.7.2	Early Warning of Water Quality Changes	16
	2.8	Contro	I Charts	16
3. Wa			eepage Collection Diversion and Return Systems on Sawyers Swamp Creel d Trace Metals	k 18
	3.1	Spring	vale Mine Water Quality	18
	3.2	Sawye	rs Swamp Creek Ash Dam Pump-back System Water Quality	20
	3.3	KVAD/	R Seepage and Subsurface Seepage Collection and Diversion Effects	23
	3.4	Lidsda	le Cut	26
4.	Stage	e 1 and	Stage 2 Dry Ash Placement Effects on Groundwater Quality	29
	4.1	Ground	dwater Flow Directions	29
	4.2	Sawye	rs Swamp Creek Ash Dam Water Quality	32
	4.3	SSCA	D Groundwater Quality	34
	4.4	KVAD	and KVAR Groundwater Quality	36
	4.5	Lidsda	le Cut	39

	4.6	Sawyers Swamp Creek	42		
	4.7	Overall Effects of Groundwater Seepage from Ash Placements on Sawyers Swamp Cre Receiving Waters	ek 43		
5.	5. Discussion				
6.	6. Conclusions				
7.	7. Recommendations				
8.	Refer	ences	49		

Tables

Table 1:	Pre-dry Ash Placement Water Quality Baseline 90 th Percentile at Background and Receiving Water Sites and resulting Guidelines or Goals for KVAD/R Groundwater, Lidsdale Cut and Sawyers Swamp Creek
Table 2:	Typical Springvale Coal Mine Water Quality
Table 3:	Summary of Average Water Quality in SSCAD for Pre-placement and Post-Stage 2 Periods and the V-notch Seepage Compared to Sawyers Swamp Creek Up- and Downstream of the V-notch, Dump Creek Background and Surface Water Guidelines or Goals
Table 4:	Summary of Average and Median Water Quality in Sawyers Swamp Creek at the Receiving Water Site, WX7, compared to KVAD/R North Wall Seepage to the creek, Up- and Downstream of the Seepage, Lidsdale Cut, Springvale Mine Water and Surface Water Guidelines or Goals
Table 5:	Median Water Quality for SSCAD V-notch Seepage and Seepage affected Groundwater bores during Post-Stage 1 and Post-Stage 2 Compared to the Groundwater Background, Seepage Bore WGM1/D4 Baseline and Groundwater Guidelines or Goals
Table 6:	Median Water Quality for Dry Ash KVAD/KVAR Groundwater Seepage Bores during Post-Stage 1, Initial Stage 2 and Stage 2A Compared to Current Groundwater Background Bore WGM1/D2 and Bore WGM1/D5 Baseline and Groundwater Guidelines or Goals
Table 7:	Median Lidsdale Cut Water Quality during Stage 1 and Capping and Stage 2 Dry Ash Placement periods compared to the current Groundwater Quality at Bore WGM1/D5 and relative to the Pre-placement Baseline 90 th Percentile and Groundwater Guidelines or Goals

Figures

Figure 1: Schematic of Kerosene Vale Dry Ash Placement Area Seepage Diversion works

Figure 2:	Surface and Groundwater Monitoring Sites for Sawyers Swamp Creek Ash Dam and Kerosene Vale Dry Ash Placement Area
Figure 3:	Sawyers Swamp Creek Conductivity and Alkalinity Variations from February, 2010 to March, 2013 at sites upstream and downstream of the v-notch (downstream site is upstream of KVAD seepage). Conductivity data is shown from before and after August, 2012
Figure 4:	Sawyers Swamp Creek Conductivity Variations from February, 2010 to February, 2012 at sites upstream and downstream of KVAD/R North Wall seepage as well as at

Figure 5: Lidsdale Cut (WX5) Conductivity compared to KVAD Seepage Detection Bores D5 and D6 Conductivity and the KVAD Groundwater Level decrease at Piezometer APA10 from October, 2010 to March, 2013

groundwater bore D5)

Receiving Water Site WX7 (downstream site taken as the LLI site near the

- Figure 6: Kerosene Vale Ash Dam and Stage 1 and Stage 2 Dry Ash Repository Groundwater Level (RL m) Contours with Inferred Flow Directions (from sketch provided by Lend Lease Infrastructure to EnergyAustralia NSW)
- Figure 7: Sawyers Swamp Creek Ash Dam Long-term Trends in Conductivity, Sulphate, Boron and Trace Metals
- Figure 8: Sawyers Swamp Creek Ash Dam Seepage Detection Bore WGM1/D4 Long-term Trends in Conductivity, Sulphate and Boron
- Figure 9: Kerosene Vale Ash Dam Seepage Detection Bore WGM1/D5 Long-term Trends in Conductivity, Sulphate and Boron (Periods for Stage 1 placement and capped since 2003; Stage 2A, including initial Stage 2 since April 2009; Blocked toe drains and Subsurface drain seepage are shown)
- Figure 10: Lidsdale Cut Long-term Trends in Conductivity, Sulphate and Boron from 2001 to June, 2012 Compared to the Pre-Stage I Baselines (Periods for Blocked toe drains from April, 2007 and KVAR Stage 2 Sub-surface drains from October, 2010 are shown)
- Figure 11: Sawyers Swamp Creek Long-term trends in Conductivity, Sulphate and Boron in relation to baseline and goals and the SSCAD Conductivity (halved) and Periods shown for the blocked KVAD toe drains, Springvale Mine water discharge and pipeline leak, SSCAD pump-back and KVAD/R seepage collection and diversion to Lidsdale Cut

Attachments

- Attachment 1: Lithgow Rainfall Data from January, 2000 to March, 2013 (mm/month) from Bureau of Meteorology
- Attachment 2: Wallerawang Power Station Ash Dam, Surface Water and Groundwater Quality Stage 2 Data from February, 2012 to March, 2013

Explanatory Statement

A person using Aurecon documents or data accepts the risk of:

- a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Important Things You Should Know About This Report

Exclusive Benefit and Reliance

- This report has been prepared by Aurecon Australia Pty Ltd (Aurecon), at the request of and exclusively for the benefit and reliance of its Client
- This report is not a certification, warranty or guarantee. It is a report scoped in accordance with the Client's instructions, having due regard to the assumptions that Aurecon can be reasonably expected to make in accordance with sound engineering practice and exercising the obligations and the level of skill, care and attention required of it under this contract.

Third Parties

- It is not possible to make a proper assessment of the report without a clear understanding of the terms of engagement
 under which the report has to be prepared, including the scope of the instructions and directions given to and the
 assumptions made by the engineer/ scientist who has prepared the report.
- The report is a report scoped in accordance with the instructions given by or on behalf of the Client. The report may
 not address issues which would need to be addressed with a third party if that party's particular circumstances,
 requirements and experience with such reports were known and may make assumptions about matters of which a
 third party is not aware.
- Aurecon therefore does not assume responsibility for the use of the report by any third party and the use of the report by any third party is at the risk of that party.

Limits of Investigation and Information

- The report is also based on information provided to Aurecon by other parties. The report is provided strictly on the basis that the information that has been provided can be relied on and is accurate, complete and adequate.
- Aurecon takes no responsibility and disclaims all liability whatsoever for any loss or damage that the Client may suffer
 resulting from any conclusions based on information provided to Aurecon, except to the extent that Aurecon expressly
 indicates in the report that it has verified the information to its satisfaction.

Summary

Aurecon was engaged by EnergyAustralia NSW to assess:

- The changes, if any, in surface and groundwater quality due to the seepage collection and diversion systems at:
 - o the Sawyers Swamp Creek Ash Dam (SSCAD) v-notch pump-back system
 - sub-surface drains in the Kerosene Vale Ash Dam (KVAD) under the dry ash Kerosene Vale Ash Repository (KVAR)
 - diversion of the KVAD groundwater to Lidsdale Cut via the unblocked KVAD toe drains
 - diversion of the Lidsdale Cut discharge from Sawyers Swamp Creek (SSC) to the Sawyers Swamp Creek Ash Dam (SSCAD)
- The effects of the Stage 1 and Stage 2A dry ash placements on surface and groundwater receiving waters with the effects of the local coal mining and the Springvale Mine water discharge taken into account.

The assessment of surface and groundwater quality found that the seepage collection and diversion systems have reduced the salinity (conductivity), sulphate and trace metals in the local groundwater bores at the KVAD/R such that, other than the local mineral effects, the water quality and trace metals met the local/ANZECC (2000) guidelines. The resulting conditions in Lidsdale Cut were greatly improved so that all the elements met the local/ANZECC (2000) guidelines. These reductions provided evidence that the Stage 1 and Stage 2 dry ash placements are not measurably affecting the groundwater quality.

This, together with the local KVAD/R seepage and more detailed measurements in Sawyers Swamp Creek, indicated no significant effects on the creek receiving waters. In addition, although the seepage from the SSCAD was found to influence the salinity (conductivity) in Sawyers Swamp Creek, the creek salinity was decreasing and there was no significant effect on the trace metals.

In contrast with the improved water quality and trace metals in the groundwater and Lidsdale Cut, the water quality at the Sawyers Swamp Creek receiving water site was elevated in trace metals. This appeared to be associated with mine spoil groundwater seepage into the creek after a heavy rainfall event.

Since mid- to late 2012, the Springvale Mine water inflows have altered the water quality and trace metal concentrations in Sawyers Swamp Creek, thereby compromising future assessments of the SSCAD and KVAD/R effects on the creek. It is recommended that the SSCAD and KVAD/R seepages, Sawyers Swamp Creek and the mine water continue to be monitored so that the effects of the mine water and local background conditions are not assigned by others to the ash placement activities.

1. Introduction

Wet slurry ash placement from Wallerawang Power Station was originally deposited in the Kerosene Vale Ash Dam (KVAD). When the KVAD was full of ash, wet ash placement was directed to the Sawyers Swamp Creek Ash Dam (SSCAD) and ultimately the KVAD was capped with clay. Ash placement in the SSCAD was ultimately ceased¹ and dry ash was placed on top of the clay capping of the KVAD.

In 2002, Delta Electricity (now EnergyAustralia NSW) obtained approval for conversion of the wet slurry ash placement process at Wallerawang Power Station to dry ash. The dry placement is called the Kerosene Vale Ash Repository (KVAR). Stage 1 of the placement was completed and capped in February, 2009. Approval was obtained for further placement in the Stage 2 Area at the KVAR in November, 2008. The Stage 2 Area placement began in April, 2009 and its second phase began on 19th January, 2012. This placement is ongoing.

During the Stage 2 dry ash placement, EnergyAustralia NSW installed seepage collection and diversion systems underneath the KVAR and reinstated the KVAD toe drains to minimise effects on the local groundwater and Sawyers Swamp Creek. These works are described in the next Section.

Aurecon has been engaged by EnergyAustralia NSW to assess the combined effects of the Stage 1 and Stage 2 dry ash placements on surface and groundwater quality in receiving waters, including the current reporting period from February, 2012 to March, 2013. The study is to take into account the potential benefits of the seepage collection and diversion works described in the next Section, as well as any influences of Springvale Mine water inflows and other, non-ash related, catchment inputs to SSC, as well as the local background conditions.

1.1 Background

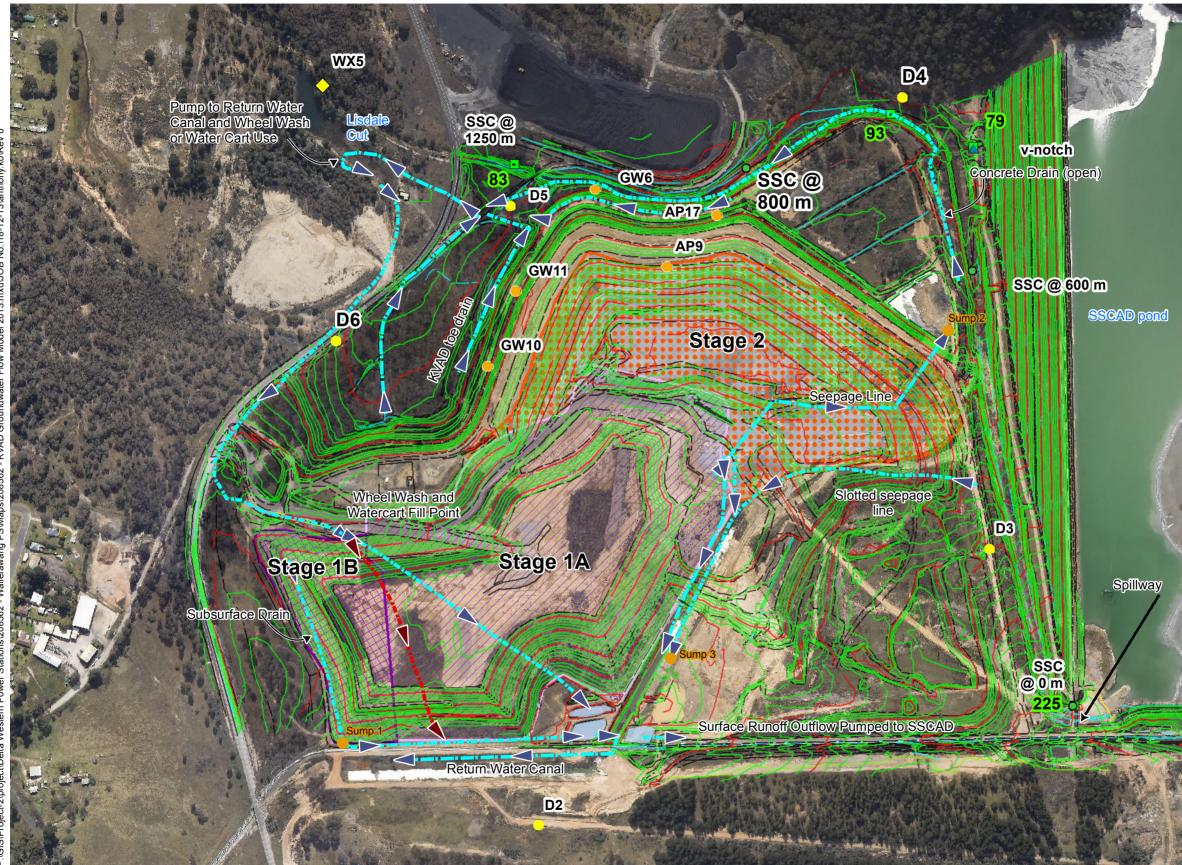
With placement of dry ash on top of the KVAD, seepage from the KVAD to Sawyers Swamp Creek (SSC) increased. As a result, it became necessary to install a new sub-surface drain in the area under the KVAR placement to collect and divert seepage to Lidsdale Cut by connection to the existing KVAD toe drains that feed onto Lidsdale Cut. Installation was completed in October, 2010. The works undertaken involved unblocking of the KVAD toe drains, which had been identified in a previous report as affecting the local groundwater quality.

The seepage collection and diversion system was designed to lower the groundwater table in the KVAD to at least 1 metre below the clay capping, which forms the base of the KVAR's dry ash placement. The groundwater level decrease was to minimise seepage from the KVAD to Sawyers Swamp Creek. A schematic of the seepage diversion system is shown in Figure 1.

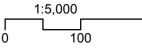
The subsurface drains are underneath the eastern section of the stage 2 area of the KVAR. Subsurface drains were not required in the north-western section of Stage 2 because seepage from the KVAD drains to the toe drains at the base of the dam wall. The toe drains on the western side of Stage 2 extend along the area near the internal bores GW10 and GW11. On the north side, the

¹ Energy Australia NSW still have the capability to use the Sawyers Swamp Creek Ash Dam for the placement of economiser grit, mill rejects, residual ash from the wash down system and emergency ash placement if necessary.

seepage flows into the toe drains that extend along the areas sampled by the piezometers AP09 and AP17 shown in Figure 1.


Subsequent to these works, the discharge from Lidsdale Cut to Sawyers Swamp Creek stopped in April, 2012 and has been diverted to the power station ash dam return canal since July, 2012 to prevent the water level increasing in the void and seeping into the local mine spoil and creeks. The water from the canal is directed to the SSCAD for retention and evaporation while some is used for dust suppression on the dry ash placement, as shown in Figure 1. The Lidsdale Cut water level has been controlled since these works were undertaken.

In combination with the KVAD seepage diversion system, EnergyAustralia NSW also installed a new seepage collection and return system at the Sawyers Swamp Creek Ash Dam to minimise seepage from the Ash Dam into Sawyers Swamp Creek. The system commenced operating in May, 2010 returning seepage water from the ash dam seepage v-notch, the main seepage point back to SSCAD as shown in Figure 1.


During 2012, the Springvale Mine water pipeline (that delivers mine water for use in the Wallerawang Power Station cooling towers) was leaking into Sawyers Swamp Creek. EnergyAustralia NSW advised Aurecon that, subsequently, the emergency mine water discharge point to upper Sawyers Swamp Creek (LDP20, see Figure 2) was removed from the Wallerawang Power Station licence on 2nd August, 2012 and became part of the Springvale Colliery licence.

The new mine water discharge site is located at the Sawyers Swamp Creek Ash Dam Spillway and has been continually discharged (other than due to pump or pipeline issues) to Sawyers Swamp Creek. This discharge enters just downstream of the spillway, and flows into the Coxs River above Lake Wallace, which provides cooling water for Wallerawang Power Station.

Since October, 2012, EnergyAustralia NSW greatly reduced the amount of mine water coming to the power station via the pipeline and since 1 July 2013 they have received virtually no mine water through the pipeline.

200m

Legend

	Groundwater Flow
	Surface Water Flow
•	Surface runoff collection pond KVAD/KVAR piezometers & groundwater bores
	EA NSW groundwater bores
•	Lend Lease SSC Sites
	VNOTCH
\diamond	Surface water sampling
	EANSW Monitoring Locations
~	Sumps CAD survey data
KVA)
///	Stage 1A
	Stage 1B
	Stage 2

Source: Aurecon, EnergyAustralia

EnergyAustralia Wallerawang Power Station

Figure 1: Schematic of Kerosene Vale Dry Ash Placement Area Seepage Diversion works

1.2 Aims and Objectives

EnergyAustralia NSW has advised Aurecon that they have completed their annual review of the Development Consent conditions of approval for KVAR Stage 2 and require an understanding of any changes in the water quality in Sawyers Swamp Creek following the implementation of the KVAR and SSCAD seepage collection and diversion works and diversion of the Lidsdale Cut discharge to the SSCAD, and confirmation that the KVAR is not interfering with local surface and groundwater quality.

One of the primary objectives of the design and operation of the KVAR is to have no adverse impact on the local ground or surface water quality. More specifically, this means that leachates from the dry ash placement should not increase concentrations of the various water quality characteristics in the receiving waters by more than the locally derived guidelines (based on the 90th percentile of the background, pre-placement sites) or the ANZECC (2000) guidelines for protection of aquatic life, whichever is higher.

As indicated in previous reports, it has been necessary to establish local guidelines for some elements, due to the effects of mineralisation (coal bearing strata) in the ash placement area. The ANZECC (2000) guideline default trigger values and the locally derived guidelines are shown in Table 1, Section 2.7.

1.3 Previous Report

The previous report (Aurecon, 2012) found that the initial KVAR Stage 2 Area dry ash placement was having insignificant or undetectable effects on surface or groundwater quality, including selenium, in receiving waters due to:

- limited rainfall infiltration into the groundwater due to the dry ash itself and compaction by machinery
- collection of the dry ash rainfall runoff and diversion to the SSCAD via the return canal
- placement of the dry ash on the clay capping of the KVAD and its limited permeability
- the sub-surface drain under the KVAR:
 - o lowered the groundwater table, which kept the KVAR placement dry
 - o reduced effects of the KVAD seepage on the local groundwater quality
- benefits of unblocking KVAD toe drains
- attenuation of selenium in ash leachate due to uptake by local soils or mine spoil
- effects of Springvale Mine water leaking from the pipeline into Sawyers Swamp Creek
- the highly mineralised nature of the catchment.

The seepage collection and diversion systems that had been installed at that time had reduced the salinity (conductivity), sulphate and trace metals in the KVAD local groundwater seepage to Sawyers Swamp Creek and in Lidsdale Cut. These reductions provided evidence that the Stage 1 and Stage 2A dry ash placements are not measurably affecting the surface and groundwater quality.

Potential effects on the water quality at the Sawyers Swamp Creek receiving water site could not be confirmed due to leaks from the Springvale Mine water pipeline and other, non-ash related, catchment inputs into the creek. Further monitoring was recommended to assess the situation once the Springvale Mine water leak had been stopped from entering the creek.

A detailed investigation of the pathway that ash leachates from the KVAR, KVAD and the SSCAD may take in reaching the local groundwater and Sawyers Swamp Creek was undertaken in a previous investigation (Aurecon, 2010). Assessment of the surface and groundwater quality data since then showed that the pathways essentially explained the observations and revealed some improvements in knowledge of how the system operates, particularly the role of Lidsdale Cut in acting as a sink for the local groundwater flows. These understandings have been incorporated into the present report.

As noted in previous reports, the ANZECC (2000) guideline approach of assessing the likely impact of water quality and trace metals in the residual seepages from the KVAR and KVAD on receiving waters was continued to be used in this report.

1.4 Scope

Aurecon has been engaged by EnergyAustralia NSW to review all ground and surface water monitoring data at the KVAR, KVAD and in Sawyers Swamp Creek to identify effects, including potential benefits, of the seepage collection and return systems or otherwise on water quality in Sawyers Swamp Creek and the upper Coxs River as a result of the various seepage collection and diversion works describe above. EnergyAustralia NSW has requested Aurecon to undertake a followup study from that of the 2012 report now that the KVAD/R seepage collection and diversion works have been finalised.

As in the previous report, the water quality at the Sawyers Swamp Creek receiving water site, WX7 (Figure 2), which is just upstream of the junction with the upper Coxs River, has been assessed in this report.

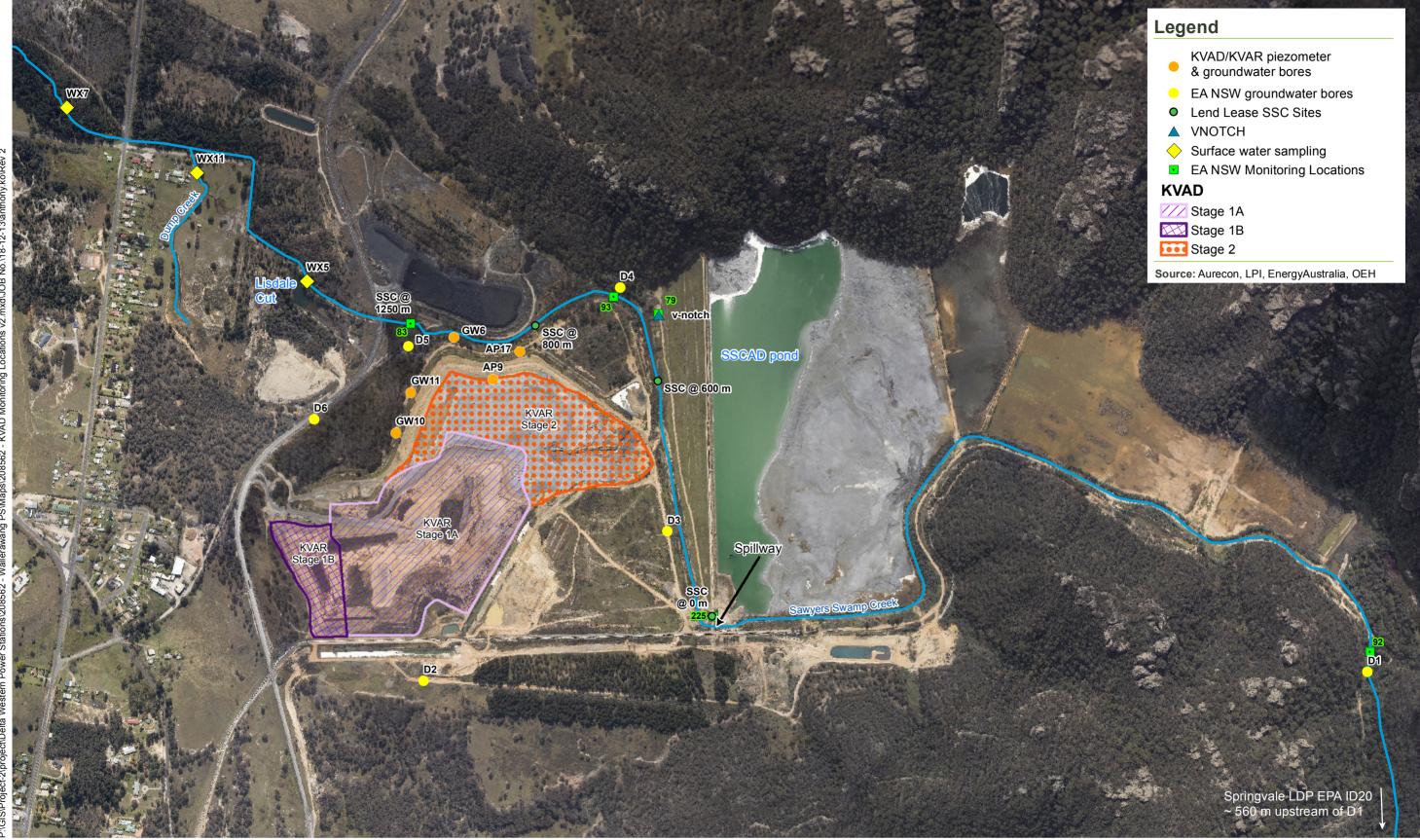
1.5 Information provided by EnergyAustralia NSW

In connection with the assignment, EnergyAustralia NSW has provided copies of:

- Relevant Lend Lease Infrastructure (LLI) KVAR management reports
- Water quality data in the dry ash runoff collection ponds and a schematic of its diversion to the SSCAD via the return canal (Figure 1)
- Plan of the KVAD final seepage diversion works
- Location of any new water quality sampling sites in the upper Coxs River
- Surface and groundwater quality data from 2010 to the present, including:
 - o Sawyers Swamp Creek receiving water site, WX7
 - Water quality in the SSCAD and KVAD seepage detection bores
 - Lidsdale Cut water quality
 - Background surface and groundwater data
- Springvale mine water quality data
- SSCAD seepage flows via the v-notch weir to the collection and pump-back system
- Any additional water quality sampling by NALCO relevant to the study
- Copy of recent, relevant correspondence with EPA on the water quality expectations in Sawyers Swamp Creek.

This data and information was used to assess the effects of the seepage collection and diversion systems and to define the inputs affecting water quality for the period of operation of Stage 1, and the

current operations of the Stage 2 placement, and their effects on local surface and groundwater quality.


1.6 Data Quality

The data contained in this report was provided by EnergyAustralia NSW and LLI. Examination of the data provided for the SSCAD showed that a data transfer error had occurred in the previous report. Accordingly, the data in Attachment 2 includes the previously provided data for the SSCAD from April, 2010 to January, 2012, as well as the current data from February, 2012 to March, 2013.

The EnergyAustralia NSW and LLI data was checked for outliers using the ANZECC (2000) protocol. In accordance with the protocol, outliers of three times the standard deviation from the mean were removed from the dataset, provided that no environmental changes had occurred that could account for such a significant change. Outliers have an asterisk next to the data in Attachment 2, thereby stopping the result from being used in statistical analyses by Excel.

As the database covers a long period of observations, it is likely that apparent changes in concentrations for trace metals such as silver, cadmium, chromium, copper and mercury may in fact be due to changes in the accuracy or detection limits of the analytical techniques used.

The OEMP requires the existing monitoring program to continue, with the addition of low detection limit analysis for trace metals (to ensure that the detection limit is lower than guideline values). All of the metals tested, except for silver, met these criteria. As the laboratory has not been able the test at the required detection limit, and in the absence of any reason to suppose that silver might be an issue in this case, it is suggested that silver be removed from the sampling program.

200

400 m

Projection: GDA 1994 MGA Zone 56

Figure 2: Surface and Groundwater Monitoring Sites for Sawyers Swamp Creek Ash Dam and Kerosene Vale Dry Ash Placement Area

aurecon

///	Stage	1A
KX	Stage	1B

EnergyAustralia Wallerawang Power Station

This Section provides an overview of the groundwater and surface water quality monitoring at the KVAD and KVAR used for assessment of effects, if any, of leachates on the local surface and groundwater quality. Due to the local inputs from coal mining activities in the area, the assessment takes into account the background conditions and provides the locally derived and ANZECC (2000) guideline trigger values, which apply as assessment criteria to the receiving waters. The discharge of Springvale Mine water to Sawyers Swamp Creek has also been taken into account.

2.1 Monitoring Design for Differentiation of Water Quality Sources

The locations of the surface and groundwater sampling sites for the various ash dams and repositories are shown in Figure 2 and are described in this Section.

Surface and groundwater quality monitoring is undertaken by EnergyAustralia NSW for assessment of the environmental performance of the KVAR ash placement as well as seepage effects from the KVAD and SSCAD.

The assessment of the KVAR effects on receiving water sites depends upon separating the effects of leachates from the KVAD, which is beneath the KVAR, local coal mine inputs and leachates and runoff effects, if any, from the KVAR itself. To do this, groundwater bore locations were established to provide baseline conditions well before dry ash placement began and the bores are located up- and down-gradient of the KVAD/R, as well as for the SSCAD.

The water quality monitoring is undertaken to confirm that the local/ANZECC (2000) guidelines (as applicable) are met in the groundwater bores D5 and D6 and in Sawyers Swamp Creek at WX7 and to enable contingency actions and investigations to be initiated in a timely manner if these limits are approached.

2.1.1 Groundwater Monitoring

The up-gradient bores (WGM4/D1 and D2) allow for the effects of various local sources of groundwater flowing into the KVAD/R and SSCAD areas. The down-gradient bores (WGM4/D3 and D4) are located for detection of the SSCAD seepage and bores WGM4/D5 and D6 are the seepage detection bores for the KVAD/R. These down-gradient bores also sample the combined effects of the local up-gradient inputs as well as those from the SSCAD and the KVAD and the KVAR. Details of the monitoring design were set out in Aurecon (2012).

In addition, Figure 6 indicates that the groundwater at bore D4 mainly flows to Sawyers Swamp Creek. However, as the groundwater seepage is expected to be slower than that from the much higher hydraulic head in the SSCAD, the SSCAD seepage effects on the creek, if any, would be expected to override any groundwater effects.

2.1.2 Surface Water Monitoring

The surface water monitoring sites comprise:

• Lidsdale Cut (WX5), which discharged to Sawyers Swamp Creek until April, 2012

• The final receiving water site, WX7, in Sawyers Swamp Creek, which is downstream of Lidsdale Cut and the local background site, WX11, in Dump Creek and upstream of the junction with Sawyers Swamp Creek and the upper Coxs River (Figure 2).

Site WX7 is the receiving waters where the local/ANZECC (2000) freshwater guideline trigger values apply for assessment of seepage effects from KVAD, KVAR, Lidsdale Cut and SSCAD.

Site WX5, samples local coal mine groundwater seepage, surface runoff and the KVAD toe drains, which previously entered Sawyers Swamp Creek but has been pumped to the SSCAD since July, 2012. EnergyAustralia NSW has been unable to monitor the water quality in the Lidsdale Cut void since July, 2012 due to drawdown of the void water level by the pumps that direct the water to the SSCAD.

2.1.3 Sampling in Upper Sawyers Swamp Creek

As recommended in the previous report, monitoring at selected sites in the creek (Figure 2) has been undertaken by EnergyAustralia NSW and the ash dam contractor (LLI) has continued to monitor at all five sites shown in Figure 2. The sites labelled "@" are monitored by LLI but only limited water quality data, such as conductivity, is collected. EnergyAustralia NSW samples at numbered sites, eg 93, which have detailed monitoring, including conductivity, alkalinity and trace metals and sampling began in June, 2012.

To put the creek sampling sites into context of the location of the SSCAD v-notch, it should be noted that site SSC@600m is about 165 m upstream, and there are two sites downstream at Site 93 (165 m downstream) and at Site SSC@800m (about 300m downstream), see Figure 2. The water quality data for the two downstream sites was combined to assess the effects, if any, of the SSCAD seepage on the creek. Conductivity was the only characteristic consistently monitored and it was used to indicate changes in water quality due to the pump-back system. A change in alkalinity at Site 93 was used as a tracer for effects of the mine water discharge.

EnergyAustralia NSW added a new site in Sawyers Swamp Creek, upstream of the SSCAD, site 92, which is the creek background water quality site. This site is also the original Delta Electricity upstream site, WX1, which has not been sampled since March, 1992, so the data for this site during the current reporting period has been added to Attachment 2 in Part 3.

The EnergyAustralia NSW monitoring is more detailed than that of LLI, including conductivity, alkalinity and trace metals. Sampling began in June, 2012. The ash dam contractor has continued to monitor at their four sites shown in Figure 2, but only limited water quality data, such as pH, conductivity and sulphate, is collected.

The following sites are sampled in Sawyers Swamp Creek and used in this report. This includes sites sampled by EnergyAustralia NSW and LLI:

- Site 92, in Sawyers Swamp Creek, upstream of the SSCAD
- SSC upstream @ 0m, located immediately downstream of the Sawyers Swamp Creek Ash Dam Spillway, where the Sawyers Swamp Creek bypass water re-enters the creek. Since August, 2012 it also includes the Springvale Mine water discharge that enters the creek at the same location. It is labelled as SSC at SSCAD Spillway in the water quality graphs in Section 3.

- SSC@600m upstream of the SSCAD V-notch (not sampled by EnergyAustralia NSW)
- Site 79, the main SSCAD seepage point v-notch.
- SSC@800m downstream of the V-notch and upstream of the KVAR north wall seepage pond,the EnergyAustralia NSW site 93 is located downstream of the V-notch.
- SSC@1250m downstream of the KVAD seepage pond.

The following notes and assumptions apply to these monitoring sites:

- The v-notch upstream site, SSC@600m, is about 165 m upstream
- Monitoring at the v-notch, site 79, began in February, 2010 to define the concentrations of
 water quality and trace metals seeping from the SSCAD to Sawyers Swamp Creek. It is
 assumed that concentrations in the v-notch are representative of the concentrations in all the
 seepage from under the dam wall into the creek as shown in Section 4, Figure 6. It is also
 likely that the seepage under the dam wall is at a slower rate than that in the v-notch
- The two sites downstream of the v-notch are Site 93 (165 m downstream of the v-notch) and at Site SSC@800m (about 300m downstream of the v-notch), see Figure 2. These sites are also used as the upstream sites for the KVAD north wall seepage pond. SSC@800m is about 100m upstream of the seepage pond
- The water quality and trace metal concentrations in the KVAD north wall seepage pond are assumed to be representative of all the seepage from under the KVAR placement into Sawyers Swamp Creek that was not possible to collect by the KVAD toe drains
- KVAD/R downstream site, SSC @1250m, is downstream of the northern section of the original KVAD dam wall.

These data, together with the routine, long-term Sawyers Swamp Creek data collected by EnergyAustralia NSW at the receiving water site, WX7, were used to identify any further improvements, above that found in the previous report, or otherwise, in water quality in Sawyers Swamp Creek as a result of the many changes mentioned above.

2.1.4 Other data considerations

In addition to the many changes in seepage collections and diversions, the Springvale Mine water discharge has further complicated the assessment of effects of the KVAR. Accordingly, this report has taken into account the effects of these changes on the water quality in Sawyers Swamp Creek, as well as the local groundwater. In addition, a series of high rainfall events occurred during summer, or late summer, in 2010/11, 2011/12 and 2012/13 and the effects of these events on the local water quality have been taken into account.

The potential for water quality changes due to the seepage collection and diversion systems are assessed in Section 3 using changes in conductivity at the various sampling sites in the upper Sawyers Swamp Creek and at the WX7 receiving water site. These changes then allowed assessment of the cause of changes in trace metal concentrations. Effects of the KVAR Stage 2 placement on surface water quality and trace metal changes are assessed against the environmental goals, and according to the ANZECC guidelines, and discussed in Section 5.

2.2 KVAR Site Monitoring and Runoff Management

Rainfall runoff from the KVAR dry placement area is collected by an ash perimeter drain which directs the runoff to a Collection Pond. Some of the collected water is reused for dust suppression by

spraying on the dry ash deposit. The collection pond is normally kept at a low level by continually pumping water to the power station return canal to prevent it from spilling into Sawyers Swamp Creek (Figure 2). Water quality data for the runoff collection ponds is shown in Attachment 2 Section 7.

EnergyAustralia NSW's contractor for ash placement at the KVAR, Lend Lease Infrastructure Services has installed piezometers at the site for sampling the groundwater height and water quality (bores GW6, 10 and 11 and AP9 and AP17, shown in Figure 2). This data, together with the water quality monitoring in Sawyers Swamp Creek from the SSCAD spillway to near the north-west side of the KVAR, was used for assessment of the potential improvements in water quality due to the seepage collection and diversion works.

2.3 Tracers for Dry Ash leachates

As mentioned in previous reports, the main trace metals and elements of interest in the rainfall runoff from the KVAR ash placement area are selenium, sulphate, boron, nickel and zinc. The background conditions in Sawyers Swamp Creek, upstream of the SSCAD (site 92) shows that aluminium is naturally elevated in the area and averaged 0.71 mg/L during 2012/13 (Attachment 2, Section 7), so it is not used as a tracer for the dry ash placement.

These elements, except selenium, are also present in the local mineralised coal geology of the area and are mainly due to the placement of mine spoil and chitter in the catchment. Chitter contains pyrites, which release sulphate and trace metals into the local groundwater and surface waters. Hence, selenium is used here as a tracer of the direct effects of the previous wet ash systems in the KVAD and SSCAD, as well as for the current dry ash placement on the local surface and groundwater.

Long-term trends in surface and groundwater quality generally use conductivity to trace salinity effects, which in the mineralised area, tends to follow that of sulphate. Sulphate and boron trends are used to show changes due to coal mining activities and selenium concentrations are used as an indicator of flyash management effects. Selenium concentrations are examined for trends if they consistently exceed the ANZECC (2000) guideline of 0.005 mg/L. Boron is used to monitor the effects of coal mining activities and can be used to represent potential effects of other trace metals.

2.4 Groundwater Levels

The water level in each groundwater bore is monitored to allow identification of the direction of water movement in the areas from up-gradient of the ash placement areas to Lidsdale Cut. The data are also used to confirm that the groundwater level in the KVAD is not reaching the dry ash placement above it.

Bores WWGM1/D5 and D6 are situated down-gradient of the ash placement and up-gradient of the Lidsdale Cut to provide early detection of leachates from the KVAR placement area. Effects of the KVAR on groundwater level changes at these bores are also monitored.

The monitoring data are shown in spread-sheet format in Attachment 2, including the minimums, maximums, means and post-dry ash median as well as the estimated baseline (pre-placement 90th percentile) and environmental goal concentrations. The data are also summarised in Tables in the body of the report.

The average annual rainfall at the Lithgow gauge over the period of KVAR ash placement from 2003 to March, 2013 increased from that during the previous reporting period to 797 mm/year (Attachment 1), which is 92% of the long-term average annual rainfall of 863 mm/year. During the period February, 2012 to March, 2013, the monthly average rainfall of 79 mm/month, was above the long-term average of 72 mm/month due to above average rainfall events in February/March, 2012 and 2013.

Since the Stage 2A placement began in April, 2010, there has been a series of wet summers due to above average rainfall events. These occurred in summer 2010/11 (November, 2010 to January, 2011 with a total of 401mm), 2011/12 (February/March, 2012 with a total of 342 mm) and a similarly high rainfall event in February/March, 2013 with a total of 297 mm (see Attachment 1).

2.6 Methods

Routine surface and groundwater water quality monitoring in the area is undertaken monthly on behalf of EnergyAustralia NSW by Nalco Analytical Resources who measure conductivity, pH and temperature in the field with a calibrated instrument.

In house methods based upon Standard Methods (APHA, 1998) are used for the general water quality characteristics of alkalinity, sulphate, chloride, calcium, magnesium, sodium, potassium, total dissolved solids (TDS) and total suspended solids (TSS, also known as non-filterable residue, NFR). The trace metals and elements monitored are the same for surface and groundwater: copper, cadmium, chromium, lead, zinc, iron, manganese, mercury, selenium, silver, arsenic, barium, boron and fluoride. Molybdenum, nickel and beryllium have been monitored since July, 2007 but beryllium was stopped in April, 2010 and aluminium has been monitored since July, 2010.

EnergyAustralia NSW has advised that the in-house methods are equivalent to those specified in DEC (2004), which also uses Standard Methods. (In this regard, it is relevant to note that the groundwater and Sawyers Swamp Creek monitoring is not required under the POEO licence). Trace metals were unfiltered, except for iron and manganese.

Groundwater bores are bailed and sampled after allowing time for the water level in the bore to reestablish. The depth to the water level from the top of the bore pipe is measured using a dip meter and the water surface elevation is calculated to AHD(m) after allowing for the pipe height.

Since April, 2006 the detection limits (DL) for routine monitoring of most trace metals tested were lower than the ANZECC (2000) guidelines (Table 1). Particular attention has been directed at the trace metals arsenic, cadmium, chromium, copper, mercury, nickel and lead, as well as the trace element selenium, which have been analysed with a low detection limit. However, due to sample matrix interference, silver has continued to be analysed above the ANZECC guideline trigger value of 0.00005mg/L since November, 2001 (see Attachment 2).

2.7 Guidelines

As used in previous reports, the principle of the ANZECC (1995) guidelines for protection of groundwater, where the potential future use of the water resource is considered, has been taken into account. In this regard, the Irrigation, Ecosystem and additional guidelines for protection of livestock or drinking water has been used, where appropriate, to provide a wider context of the ANZECC (2000) guidelines, to define acceptable ambient water quality at the KVAD/R Stage 2 receiving water sites.

The ANZECC Guidelines for Groundwater Protection in Australia (1995) and the NEPC (1999, update in May, 2013) require the background water quality in groundwater bores to be taken into account. As the NEPC (1999), and the updated 2013 version, did not define the meaning of "background" concentrations for groundwater, the baseline concentrations were continued to be defined, as used in previous reports, as the 90th percentile of the pre-placement concentrations, or the ANZECC guideline default trigger values, whichever is higher. Use of the background 90th percentiles is taken from the ANZECC (2000) guideline procedure for condition 3, highly modified catchments, which generally occur in mineralised areas.

Local guidelines are based on the ANZECC (2000) guideline approach of estimating local guidelines using the 90th percentile for naturally mineralised, highly disturbed groundwater. Hence, the background 90th percentiles that are higher than the default trigger values, are used as the local guidelines. The local and ANZECC guideline trigger values used are called the Environmental Goals and are shown in Table 1.

The groundwater background concentrations use the pre-placement data from the background bore, WGM1/D2, and elevated concentrations at the seepage detection bore WGM1/D5 and Lidsdale Cut (WX5) were also taken into account. The surface water background concentrations use the pre-placement data at Dump Creek, WX11, which is the local background for the mineralised area. The pre-KVAR data at WX7 was also taken into account. The 90th percentile baseline concentrations for all the water quality characteristics monitored are shown in bold in Table 1.

As discussed in Section 2.1, the surface water guideline goals apply to the receiving waters of Sawyers Swamp Creek at WX7 (Figure 1). The groundwater goals apply to the seepage detection bore WGM1/D5, but not Lidsdale Cut (WX5) since July, 2012 (see Section 4.5), and these are used for early warning of potential effects on the Sawyers Swamp Creek receiving waters. These goals are used for assessment of the Stage 2 effects in this report.

In recent times, the level of groundwater in bore D5 has decreased due to lowering of the groundwater under the KVAR by the toe drains and sub-surface drains and sample collection has been limited at times (see Section 4.4).

Table 1: Pre-dry Ash Placement Water Quality Baseline 90th Percentile at Background andReceiving Water Sites and resulting Guidelines or Goals for KVAD/R Groundwater, LidsdaleCut and Sawyers Swamp Creek

		Groun	ndwater		Surface Water				
Element Background (mg/L) Groundwater (WGM1/D2)		roundwater Groundwater			Dump Creek (WX11)	Sawyers Swamp Creek (WX7)			
	Pre- Placement (1988-2003) 90 th Percentile	Pre-Placement (1988-2003) 90 th Percentile	Pre-Placement (1992-2003) 90 th Percentile	Groundwater Guidelines# or Goals	Pre-placement (1991-2003) 90th Percentile	Pre-placement (1991-2003) 90 th Percentile	Surface Water Guidelines# or Goals		
рН	5.4	4.5	6.9	6.5 - 8.0	8.0	7.6	6.5 – 8.0		
Cond/ (µS/cm)	310	810	952	2600^	770	760	2200		
TDS	258	550	650	2000++	772	584	1500^		
SO4	61	328	359	1000	325	323	1000 ++		
CI	48	24	34	350	39	27	350 +		
As	<0.001	0.008	<0.001	0.024	<0.001	<0.001	0.024		
Ag	<0.001*	<0.001*	<0.001*	0.00005	<0.001	<0.001*	0.00005		
Ва	0.114	0.148	0.054	0.7	0.050	0.043	0.7 +++		
Be	-	0.006	-	0.1	-	-	0.1		
В	0.10	1.7	2.16	1.7	1.45	2.33	1.25		
Cd	0.001	0.004	<0.001	0.001	<0.001	<0.001	0.0015		
Cr	0.041	0.041	<0.006	0.004	<0.001	<0.001	0.005		
Cu	0.010	0.058	<0.005	0.005	0.002	<0.007	0.005		
F	0.28	0.65	1.99	1.5	1.1	1.1	1.5+++		
Fe	1.7	14.7	0.7	1.7	2.38	0.507	0.3+++		
Hg	<0.0007*	<0.0006	<0.0002*	0.00006	<0.0002*	<0.0002*	0.00006		
Mn	0.44	2.5	2.12	1.9	1.94	0.829	1.9		
Мо	-	-	-	0.01	-	-	0.01 +		
Ni	0.031	0.137	-	0.137	-	-	0.05		
Pb	0.010	0.021	0.004	0.01	<0.001	0.003	0.005		
Se	<0.001	0.001	0.001	0.005	0.003	0.003	0.005		
Zn	0.114	0.505	0.304	0.505	0.28	0.153	0.153		

Notes:

- * Detection limit used was higher than ANZECC guidelines
- Groundwater conductivity derived from TDS 90th percentile of 2000 mg/L TDS/0.77; Creek TDS derived from 0.68 x 2200 µS/cm, which is the ANZECC (2000) low land river conductivity for protection of aquatic life
- # ANZECC (2000) guidelines for protection of freshwaters, livestock or irrigation water.

Cadmium, Chromium, Copper, lead, nickel and zinc adjusted for effects of hardness: Ca, Mg in WGM1/D5 22.3, 29.0 mg/L: in Sawyers Swamp Creek 51.6, 38.0 mg/L, respectively

Note: Chromium guideline is 1 ug/L for CrVI and adjusted for hardness effect

Local guidelines using 90th percentile of pre-dry placement data in **bold** (Note: Fe guideline of 0.3 mg/L only marginally lower than

WX7 90th percentile so used ANZECC (2000) guideline)

- + Irrigation water moderately tolerant crops; irrigation. Note: Molybdenum drinking is 0.05 mg/L
- ++ Livestock
- +++ drinking water

As mentioned in previous reports, the adoption of the surface water conductivity guideline of $2,200\mu$ S/cm shown in Table 1 was based on the background Dump Creek site, WX11, and the Sawyers Swamp Creek receiving water site, WX7, both having 90th percentile conductivity of more than twice the ANZECC (2000) guideline default upland river trigger value of 350 μ S/cm (upland rivers are defined as above 150m altitude).

The 90th percentile concentration at the Dump Creek site demonstrates that this was caused by local mineralisation effects, so use of the upland value was not considered appropriate. As a result, the higher ANZECC (2000) lowland (altitude below 150m) river conductivity trigger value of 2,200 μ S/cm was used for protection of aquatic life in Sawyers Swamp Creek (Connell Wagner, 2008). This approach has proven to be appropriate because the background conductivity at WX11 increased to about 1400 uS/cm in the 2010/12 reporting period, apparently due to diffuse effects of coal mining activities in the area (Aurecon, 2012).

Although the background groundwater bore, D2, 90th percentile conductivity was lower than the upland river trigger value of 350 μ S/cm, the pre-dry ash placement 90th percentiles at the KVAD groundwater bore D5, as well as the Lidsdale Cut conductivities, were higher than in the creeks. As groundwater seepage into Sawyers Swamp Creek would be slow, use of the creek trigger value was not considered appropriate for groundwater. As mentioned in previous reports, the approach adopted was the ANZECC (1995) guidelines for protection of groundwater, where the potential future use of the water resource is taken into account. As shown in Table 1, the livestock drinking water guideline for salinity, of 2,000 mg/L TDS, was considered relevant to the assessment of groundwater in the area, should the groundwater be used for watering livestock in the future (Connell Wagner, 2008). The TDS was converted to the conductivity local trigger value of 2,600 μ S/cm by dividing by the conversion factor 0.77, which was derived from the measured groundwater conductivity and TDS.

2.7.1 Receiving Waters

As discussed in Section 2.1 and (Aurecon 2012), previous reports identified the following receiving water sites for assessment of ash leachate effects from the KVAR dry ash placement:

Groundwater bore WGM1/D5

- Lidsdale Cut (sampling site WX5)
- Sawyers Swamp Creek at site WX7.

The following provides clarification of how the receiving water sites are used to assess effects fo the SSCAD and KVAR.

With the various collection systems in place, the Sawyers Swamp Creek site is the final receiving water site for the residual SSCAD, KVAD and KVAR seepages, and the now Lidsdale Cut seepage. Site WX7 also receives inflows from the local background catchment of Dump Creek and groundwater inflows to the creek from areas where it flows through the coal measures upstream of the KVAD/R.

Bore WGM1/D5 represents the groundwater receiving water site for seepage from the KVAD/R that was not collected by the KVAD toe drains or the KVAR sub-surface drains that are directed to Lidsdale Cut via the KVAD toe drains. Consequently, the water quality in Lidsdale Cut, in addition to that at bore D5, has continued to be used for early warning of potential effects of groundwater in the water quality at WX7. Hence, WX7 is the final receiving water site for the ash placement areas. This approach was used in previous reports and has been used here for the current assessment.

As EnergyAustralia NSW has begun routinely monitoring of the water quality in the upper Sawyers Swamp Creek where it flows through the coal measures upstream of the KVAD/R, changes in surface water quality at WX7 were assessed by comparison with these upstream sites, as well as the catchment background water quality in Dump Creek at WX11.

2.7.2 Early Warning of Water Quality Changes

An early warning of changes in water quality that may potentially approach the relevant local guidelines set out in Table 1 is required for the ash repository management to allow time for investigations of the causes of changes and controls to be implemented if necessary. The approach used is the ANZECC (2000) guideline procedure for developing triggers for investigations of the cause of changes, and possible management actions. This approach involves comparing the 50th percentile (median) in receiving waters with the 90th percentile of the background or pre-KVAR water quality at the receiving water sites. An early warning of changes is signalled when the post-placement 50th percentile exceeds the pre-placement 90th percentile water quality conditions. This approach is supplemented by the use of Control Charts to show concentration changes relative to local/ANZECC trigger values and the 90th percentile pre-KVAR conditions.

These procedures are applied to each down-gradient groundwater bore, the Lidsdale Cut and Sawyers Swamp Creek at WX7 to assess long-term changes that are approaching the local/ANZECC trigger values.

2.8 Control Charts

Long-term plots are used to allow the identification of trends against the baseline and environmental goals. The trends are tracked using Control Charts (APHA Standard Methods, 1995 and ANZECC guidelines for Monitoring and Reporting, 2000) and the significance of any changes is determined by comparison with the criteria of pre-placement 90th percentiles, post-placement medians, ANZECC (2000) guidelines or local guidelines. As the ANZECC guidelines apply to the receiving waters of Sawyers Swamp Creek, Lidsdale Cut and the KVAD and Stages I and II seepage detection bore D5, the trends over time are graphed against these environmental goals.

Investigations are indicated when the control chart shows that the post-placement median has exceeded the pre-placement 90th percentile. The medians are updated with data for each reporting period. If the investigation of the increase shows that it is likely to be due to the ash placement, early intervention may be warranted to minimise the potential for further increases. If the trend for increase continues, and approaches the local environmental goals, further management action would be indicated.

To keep the number of charts manageable, only those parameters of relevance to the Stage 2 dry ash placement, such as conductivity, sulphate, boron and selenium, or those showing significant unexplained increases above the levels expected from the Stage 2 Environmental Assessment (PB, 2008) are graphed.

Elevated sulphate and boron concentrations are associated with coal mining activities and can also be elevated in flyash leachate and mine spoil (PPI, 1999). The presence of boron in higher than background concentrations is often associated with other trace metals and elements such as fluoride, nickel and zinc. The data for these and other elements are shown in Attachment 2.

The data are also summarised in Tables in this report, or in spreadsheet format in Attachment 2, including the minimum, maximum and mean as well as the 90th percentile baseline, median post-placement, ANZECC guidelines and local guideline concentrations.

3. Effects of Seepage Collection Diversion and Return Systems on Sawyers Swamp Creek Water Quality and Trace Metals

This Section presents assessment further to that in the previous report on the likely effects of the KVAR Stage 2 seepage, the KVAD/R subsurface drains and SSCAD seepage collection and return systems on receiving water quality and trace metals in Sawyers Swamp Creek. As the subsurface drains and the KVAD toe drains send the collected seepage to Lidsdale Cut, the effects of the Lidsdale Cut v-notch discharge on the creek, prior to its cessation in April-June, 2012, are also examined.

As the Springvale Mine water discharge has altered the water quality in Sawyers Swamp Creek, its characteristics are discussed first.

3.1 Springvale Mine Water Quality

As noted above, the Springvale Mine water pipeline has been licenced to discharge to the creek since August, 2012 but has been leaking into the creek since July, 2011 (Aurecon, 2012), so the effects of mine water discharge has been examined first. The mine discharge rate, at 20 ML/day, is expected to be greater than the sum of the ash related seepage rates, particularly as much of the ash related seepage has been collected and diverted from entering the creek since 2010.

EnergyAustralia NSW has provided a copy of the typical Springvale Mine water quality, which is shown in Table 2. More accurate trace metal data is shown in Table 3.

The mine water is characterised by relatively low dissolved salts, including sulphate and chloride, but the conductivity is relatively high at 745 to 1098 uS/cm due to a high concentration of bicarbonate alkalinity. This is possibly derived from the limestone dust which is applied to the floor and walls of the mine as an explosion inhibitor. The discharge is also characterised by relatively low concentrations of trace metals, including selenium. As the alkalinity is higher than the various ash placement seepage waters, alkalinity has been used as a tracer for the mine water discharge to Sawyers Swamp Creek.

Parameter Mine Water								
(mg/L)	Ran	Average						
рН	7.2	to	7.7	7.5				
EC (uS/cm)	704	to	786	745				
TSS	0	to	8	3				
TDS	413	to	502	458				
Turbidity (NTU)	-	to	-	-				
Calcium	22	to	32	27				
Magnesium	10	to	16	13				
Potassium	31	to	40	36				
Sodium	88	to	119	104				
Alkalinity (HCO3)	323	to	359	341				
Sulphate	26	to	45	35				
Chloride	4	to	13	8				
Ammonia	0.0	to	1.2	0.4				
Nitrate + Nitrite	0.0	to	2.8	1.3				
Arsenic	0.00	to	0.02	0.01				
Barium	0.0	to	0.3	0.2				
Boron	0.0	to	0.2	0.1				
Cadmium	0.00	to	0.00	0.00				
Chromium (VI)	0.00	to	0.01	0.00				
Copper	0.0	to	0.1	0.0				
Fluoride	0.0	to	0.6	0.3				
Lead	0.00	to	0.06	0.03				
Mercury	0.000	to	0.000	0.000				
Selenium	0.00	to	0.00	0.00				
Silver	0.00	to	0.01	0.00				
Zinc	0.0	to	0.2	0.1				
Fe (filt)	0.0	to	0.1	0.0				
Mn (filt)	0.00	to	0.22	0.10				

Table 2: Typical Springvale Coal Mine Water Quality

The water quality in the SSCAD and in the main seepage point from the ash dam (the v-notch, see Figure 2) into Sawyers Swamp Creek (Table 3) is compared with the water quality in the creek, upstream and downstream of the v-notch. Changes in conductivity and alkalinity in the creek are assessed in relation to the ash dam seepage collection and pump-back system in March, 2010. Water quality changes in the creek are also examined to provide an indication of effects of the Springvale Mine discharge since August, 2012.

Table 3: Summary of Average Water Quality in SSCAD for Pre-placement and Post-Stage 2 Periods and the V-notch Seepage Compared to Sawyers Swamp Creek Up- and Downstream of the V-notch, Dump Creek Background and Surface Water Guidelines or Goals

Elemen t (mg/L)	Pre- Placemen t (1996- 2003)	Stage 2A Post- placement (April, 2010- January, 2012)	Ongoing Stage 2 Post- placemen t February, 2012 to March, 2013	V-Notch Seepage February , 2012 to March, 2013	SSC Upstream V-Notch Seepage February, 2012 to March, 2013	SSC Downstrea m V-Notch Seepage February, 2012 to March, 2013	Mine Discharge Indicative Water Quality Data ** 50th Percentile	Back-ground Dump Creek,WX11 (February, 2012-March, 2013)	ANZECC (2000) Guide-lines & Goals for SSC
	SSCAD	SSCAD	SSCAD	SSCAD	SSC	SSC	Springvale Mine Water**	WX11	
рH	5.4	4.8	4.8	7.2	8.4	8.1	8.4	3.5	6.5-8.0
Cond (µS/cm)	1219	1912	1457	1629	640	714	1098	1519	2200
TDS	858	1418	1066	1195	374	450	845	1059	1500
SO4	553	910	674	712	21	61	44	701	1000
CI	18	30	20	44	8	11	-	33	350
Alk	18	19	25	84	-	366	341	21.4	-
As	0.016	0.0013	0.002	<0.001	-	0.009	0.008	0.001	0.024
Cd	0.012	0.0021	0.0042	0.0003	-	<0.0002	-	0.0004	0.0015
Cr	0.005	0.0014	0.0028	0.002	-	<0.001	-	0.0012	0.005
Cu	0.007	0.0115	0.0203	0.003	-	0.007	<0.01	0.0054	0.005
Fe	0.17	0.21	0.08	0.05	-	0.18	0.19	6.68	0.3
Mn	1.2	1.34	1.17	0.02	-	0.03	0.015	6.29	1.9
В	4.7	2.01	1.82	2.2	-	0.18	0.055	2.68	1.25
F	9.3	2.15	2.21	1.21	-	0.87	1.28	1.36	1.5
Мо	0.152	0.033	0.013	<0.01	-	0.02	-	0.010	0.01
Ni	0.129	0.041	0.071	<0.01	-	0.003	<0.01	0.428	0.05
Pb	0.002	0.001	0.003	<0.001	-	0.002	-	0.002	0.005
Se	0.151	0.006	0.009	0.002	-	<0.002	<0.002	0.002	0.005
Zn	0.426	0.136	0.263	0.04	-	0.035	0.04	1.096	0.153

** Mine emergency discharge data from Aurecon (2010) for 17th Feb to 7th Aug09

Table 3 shows the following characteristics:

- A moderate increase in conductivity from upstream to downstream of the v-notch in SSC
- Conductivity in the creek is much lower than in the SSCAD or the v-notch discharge and is similar to that of the Springvale mine water
- Alkalinity in the creek (downstream of the v-notch) is much higher than in the SSCAD or the vnotch discharge and is similar to that of the Springvale mine water
- Arsenic and molybdenum in the creek (downstream of the v-notch) are higher than in the SSCAD or the v-notch discharge and the arsenic is similar to that in the mine water.
- Copper in the creek is higher than in the v-notch and in bore D4 (Table 5). Contribution to these metals by the Springvale mine water, if any, cannot be determined due to lack of data or the high detection limits used but the copper concentration at the downstream site increased to 0.022 mg/L in August, 2012 at the time the continuous mine water discharge began. This may explain the high average copper concentration. See also comments on these metals in Section 3.3 and Table 4.

It is noted that the concentration of all these trace metals has increased since the initial detailed sampling from February to October, 2010 by LLI at the downstream site (SSC@800m) – see Attachment 2.8. During February to October, 2010, arsenic averaged 0.002 mg/L (now 0.009 mg/L), copper 0.002 (now 0.007 mg/L) and molybdenum <0.01 (now 0.02 mg/L). As a result of these changes, copper and molybdenum are now higher than their respective local guidelines and higher than in the background site in Dump Creek (Table 3).

The sampling site at the SSCAD spillway (SSC@0m, Figure 2) where the SSCAD freshwater inflow diversion, as well as the Springvale Mine Water discharges since August, 2012, enters Sawyers Swamp Creek, has been sampled for water quality and trace metals since November, 2012. In addition, the water quality and trace metals at site 92, SSC upstream of the ash dam (Figure 2) have been sampled since June, 2012. The results are shown in Attachment 2.8. These data show that the combined discharge was elevated in arsenic and molybdenum but not copper, while the upstream SSC has low concentrations of these trace metals. Hence, it is suggested that EnergyAustralia NSW sample the mine water for trace metals to assist in confirmation of the cause of the increases in the creek.

To assist in clarification of the changes in Sawyers Swamp Creek, upstream and downstream of the vnotch, due to the mine water, changes over time in conductivity and alkalinity from February 2010 to March, 2013 are shown in Figure 3. The LLI dataset had missing data, which are shown as dotted lines in Figure 3.

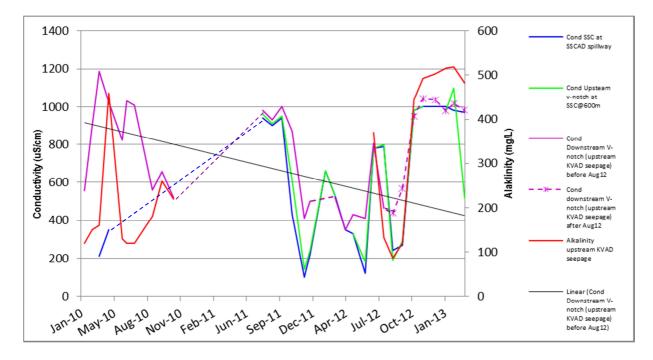


Figure 3: Sawyers Swamp Creek Conductivity and Alkalinity Variations from February, 2010 to March, 2013 at sites upstream and downstream of the v-notch (downstream site is upstream of KVAD seepage). Conductivity data is shown from before and after August, 2012 (Missing data in 2010/11 shown as dotted lines)

Figure 3 shows the following changes:

- From 2010 to August, 2012 there was a long-term trend for decrease in conductivity at the SSC downstream site (even with an intermediate effect of the pipeline leak). These changes are considered to be due to improvements resulting from the v-notch pump-back system. The changes are not likely to be due to the seepage collection improvements at the KVAD/R ash placement area because the downstream sampling site is located upstream of the KVAD seepage
- Conductivity at the SSCAD spillway site increased from October to December, 2011 due to a leak in the Springvale Coal Mine pipeline. The conductivity subsequently decreased until September, 2012
- Between September and October, 2012, the conductivity at the SSCAD spillway, as well as at the sites upstream and downstream of the v-notch all sharply increased to the same levels of about 1000 uS/cm
- As the same time as the recent conductivity increase, the alkalinity at the downstream site increased from mostly less than 250 mg/L in 2010 to about 500 mg/L from October, 2012.

EnergyAustralia NSW has advised that the licenced discharge of the Springvale Mine water pipeline into Sawyers Swamp Creek, from just below the ash dam spillway crest, was the cause of the high conductivity and alkalinity at the spillway sampling site and in the creek. This means that the discharge now dominates the water quality conditions in the upper Sawyers Swamp Creek and has eliminated the observed conductivity improvements before the discharge began, which were thought to have resulted from the v-notch pump-back system.

It should be noted that the diversion of the Lidsdale Cut water to the ash dam may significantly change the water quality in the SSCAD over time. This could be confirmed by ongoing monitoring.

The main KVAD/R seepage point from the north wall into Sawyers Swamp Creek is located near the ash placement internal groundwater bore GW6 (Figure 2). The water quality in the seepage, as well as in Sawyers Swamp Creek, and upstream and downstream of the seepage point, is shown in Table 4, as is the water quality at the receiving water site, WX7. Unfortunately, the KVAD/R seepage to the creek is only tested for general water quality, such as conductivity, and trace metals are not measured, so it is suggested that EnergyAustralia NSW test the north wall seepage water for trace metals as well as general water quality.

Changes in conductivity in the creek have also been assessed in relation to the KVAD/R subsurface drains for seepage collection and diversion to Lidsdale Cut since October, 2010. Water quality changes in the creek are also examined in relation to effects of the Springvale Mine discharge since August, 2012. Cessation of discharges from Lidsdale Cut to the creek, which was stopped in April, 2012, has also been taken into account.

Table 4: Summary of Average and Median Water Quality in Sawyers Swamp Creek at the Receiving Water Site, WX7, compared to KVAD/R North Wall Seepage to the creek, Up- and Downstream of the Seepage, Lidsdale Cut, Springvale Mine Water and Surface Water Guidelines or Goals

Element (mg/L)				North Wall KVAD/R Seepage to SSC		yers Swamp eek	Springvale Mine Water**	Lidsdale Cut (WX5)	
	Pre- placement (1991-2003) 90 th Percentile	Stage 2A Post- placement (April, 2010- January, 2012) Median	Ongoing Stage 2 Post- placement (February, 2012- March, 2013)	Ongoing Stage 2 Post- placement (February, 2012- March, 2013)	SSC upstream KVAD/R Seepage & below V- notch (February, 2012 to March, 2013)	SSC down- stream KVAD/R Seepage near D5 (February, 2012 to March, 2013)	Indicative Water Quality Data ** Median	Ongoing Stage 2 Post- placement (February, 2012- July, 2012) Median	Surface Water Guidelines# or Goals^
pН	7.6	7.3	7.5	4.2	8.1	8.0	8.4	7.3	6.5 – 8.0
Cond (µS/cm)	760	1100	828	1462	714	688	1098	590	2200
TDS	584	690	553	1244	450	435	845	360	1500^
SO4	323	300	156	769	61	67	44	160	1000 ++
CI	27	16	11	19	11	11	-	13	350 +
Alkalinity	20	162*	257*	-	366	278	341	100	-
As	<0.001	0.004	0.007	-	0.009	0.008	0.008	0.001	0.024
В	2.33	1.4	0.634	-	0.18	0.22	0.055	0.55	1.25
Cd	<0.001	0.0007	0.0011	-	<0.0002	<0.0002	-	0.0007	0.0015
Cr	<0.001	0.0025	0.0128	-	<0.001	<0.001	-	0.001	0.005
Cu	<0.007	0.003	0.0099	-	0.007	0.001	<0.01	0.0025	0.005
F	1.1	1.7	1.7	-	0.87	0.786	1.28	0.80	1.5+++
Fe	0.507	0.02	0.26	-	0.18	0.28	0.19	0.12	0.3+++
Mn	0.829	1.7	0.72	-	0.03	0.25	0.015	0.74	1.9
Мо	-	0.02	0.014	-	0.02	0.02	-	0.010	0.01 +
Ni	-	0.16	0.059	-	0.003	<0.01	<0.01	0.03	0.05
Pb	0.003	0.002	0.003	-	0.002	0.001	-	0.001	0.005
Se	0.003	<0.002	<0.001	-	<0.002	<0.002	<0.002	0.002	0.005
Zn	0.153	0.45	0.035	-	0.035	0.03	0.04	0.070	0.153

*averages used to allow for effects of periods of mine water pipeline leakage or the recent discharge

** Mine emergency discharge data from Aurecon (2010) for 17^{th} Feb to 7^{th} Aug09

Table 4 shows the following characteristics:

- The KVAD/R Seepage appears not to have an effect on the conductivity or total dissolved solids (TDS) in upper Sawyers Swamp Creek as they were both lower downstream of the north wall KVAD/R seepage point than upstream.
- The KVAD/R seepage sulphate at 769 mg/L was the highest source of sulphate, including the mine water, Lidsdale Cut and the SSCAD v-notch seepage (Table 3). Note that the north wall KVAD/R sulphate was even higher than in Dump Creek (see Table 3) which enters SSC upstream of WX7 but downstream of the creek site near D5. This suggests that the KVAD/R

seepage was the cause of the small sulphate increase from upstream to downstream of the KVAD/R seepage point. However, the sulphate still met the local/ANZECC (2000) guideline goals. The average sulphate in Table 4 includes the period from October, 2012 when the mine water ceased to be used directly by the power station and was diverted to Sawyers swamp Creek. With this data not included, the increase in sulphate from February to September, 2012 was from 75 mg/L upstream to 91 mg/L downstream of the KVAD/R seepage point. Hence, the effects of the seepage were not significant in terms of the local/ANZECC (2000) guidelines.

- The moderate boron increase from up- to downstream of the north wall seepage is consistent with the sulphate increase in the creek, which indicates that the KVAD/R seepage has a higher boron than in the Springvale mine water
- Alkalinity in the creek downstream of the KVAD/R seepage (near bore D5 and at WX7) is moderately lower than the upstream site, which is similar to that of the Springvale mine water. The moderate decrease is likely to be due to the low pH in the seepage water (for which there is no alkalinity data).
- The moderate level of alkalinity in Lidsdale Cut, before it stopped discharging, is higher than the typical 20 mg/L in bore D5 (see Table 6, Section 4.4) due to the recent increase in pH in the void from 4.8 to the current 7.3. The alkalinity and pH increase is suggested to be due to mine water flowing down Sawyers Swamp Creek and seeping into the Lidsdale Cut void (see Section 4.5)
- Arsenic and molybdenum at the downstream sites in the creek, as well as at WX7, are higher than the current concentrations in Lidsdale Cut. Cadmium, copper, chromium, fluoride and nickel are also higher at WX7 than in Lidsdale Cut.
- The concentrations of arsenic, cadmium, copper and chromium have increased at WX7 since the previous reporting period. As a result of these changes, copper and chromium are now higher than their respective local guidelines and higher than in the background site in Dump Creek (Table 3).
- The Springvale mine water discharge has lowered the conductivity, total dissolved solids and sulphate, as well as the concentrations of boron, manganese, nickel and zinc at WX7 such that, of these, only nickel is now higher than the local guidelines.

The source of the elevated copper and chromium concentrations at WX7 was investigated and was found to be due to a large increase in trace metal concentrations, including copper and chromium, at WX7 in May, 2012 (see Attachment 2.1). EnergyAustralia NSW advised that the high groundwater inflows to Lidsdale Cut following the February/March flood caused the void water level to rise and seep into the local mine spoil. The acidic pH and high conductivity, sulphate and trace metals, including aluminium, boron and nickel, are characteristic of the local mine spoil groundwater. As the trace metal increases did not occur in Sawyers Swamp Creek near D5, in Lidsdale Cut or in Dump Creek, the coal related groundwater seepage must have entered the creek upstream of WX7 and downstream of Lidsdale Cut. Hence, it is unlikely that the increase was related to the KVAD/R Stage 1 and Stage 2 ash placements and it appears that the discolouring of Sawyers Swamp Creek in April, 2012 was inappropriately assigned to the Lidsdale Cut discharge.

It is unlikely that the Springvale mine water added to the chromium levels at WX7 at this time because Table 4 shows that the creek sites above and below the KVAD/R seepage, and both upstream of Lidsdale Cut, had low chromium concentrations. In addition, although the KVAD/R upstream site had elevated copper, the high copper occurred later in August (see Attachment 2.8) and the downstream site, near D5, had low copper levels. However, to clarify the effects of the mine water, if any, on cadmium, copper, chromium, molybdenum and lead in the creek, measurements of the mine water discharge are suggested to be undertaken at detection limits lower than the ANZECC (2000) guidelines.

To further assess the effects of the KVAD/R seepage collection and diversion systems on the water quality and trace metals in Sawyers Swamp Creek, as well as changes due to the mine water, the trends over time are examined in Figure 4.

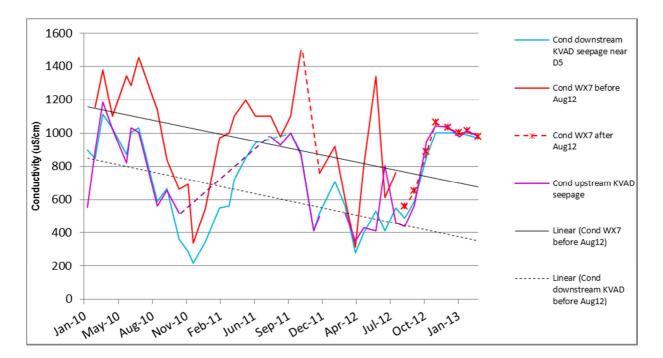
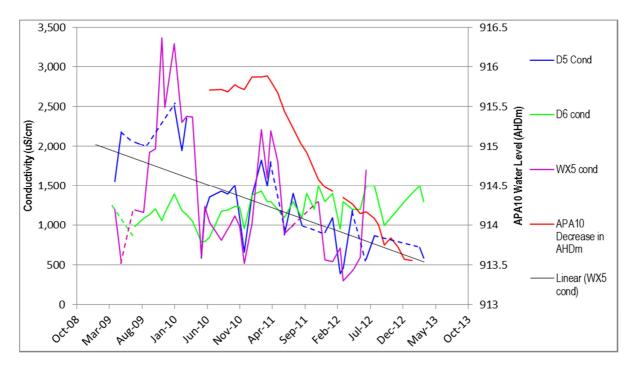


Figure 4: Sawyers Swamp Creek Conductivity Variations from February, 2010 to February, 2012 at sites upstream and downstream of KVAD/R North Wall seepage as well as at Receiving Water Site WX7 (downstream site taken as the LLI site near the groundwater bore D5)

Figure 4 shows the following changes:


- Prior to the mine water discharge in August, 2012, there was a trend for decrease in conductivity in Sawyers Swamp Creek at both the KVAD/R downstream site and at the receiving water site WX7, which is located downstream of the Dump Creek inflow. This trend was evident even with the intermediate effect of the pipeline leak in 2011. These changes are considered to be due to improvements resulting from the KVAD/R seepage collection and diversion system since 2010. As shown in Figure 3, the conductivity also decreased at the creek site upstream of the KVAD/R, apparently due to the SSCAD seepage collection system
- After the Springvale mine water began to be discharged to the creek, the conductivity at the KVAD/R upstream and downstream sites, as well as at WX7 sharply increased to all be at the same levels of about 1000 uS/cm between September and October, 2012.

At the same time as the recent conductivity increase, the alkalinity at the downstream site increased from an average of 119 mg/L before October, 2012 to 490 mg/L from October, 2012. A similar increase was observed at WX7, confirming the dominant effects of the mine water discharge on the water quality in the creek.

3.4 Lidsdale Cut

This Section assess the effects of the Lidsdale Cut discharge on the water quality in Sawyers Swamp Creek. The assessment of effects of KVAD/R seepage and local groundwater on the water quality in Lidsdale Cut itself and its ongoing changes is provided in Section 4.5.

The KVAD/R seepage collection and diversion system to Lidsdale Cut was previously shown to improve the water quality in Lidsdale Cut (WX5). This section examines the ongoing changes to June, 2012 which are shown in Figure 5.

Figure 5: Lidsdale Cut (WX5) Conductivity compared to KVAD Seepage Detection Bores D5 and D6 Conductivity and the KVAD Groundwater Level decrease at Piezometer APA10 from October, 2010 to March, 2013

Figure 5 shows that the KVAD/R seepage collection and diversion system to Lidsdale Cut has lowered the conductivity in the void from over 2500 to about 1000 uS/cm since the initial installation in 2010. The conductivity in the void has decreased to be lower than the average of the KVAD/R north wall seepage of 1462 uS/cm (Table 4), indicating that the seepage collection system is collecting lower salinity water from other areas under the ash placement. This is confirmed by the similar trend in conductivity for the WWGM4/D5 groundwater bore, which is down-gradient of the KVAD/R placement but near, and up-gradient of the Lidsdale Cut void. In addition, soon after installation of the seepage collection system in 2010, the conductivity in Lidsdale Cut and D5 became similar to each other.

The changes in conductivity in Lidsdale Cut and bore D5 were investigated further by comparison with the conductivity in the groundwater bore D6, which is down-gradient of the KVAD and the drawdown in the groundwater level under the KVAR as measured at the LLI piezometer APA10 (Figure 5). The piezometer was installed inside the Stage KVAR area and deep enough to sample the groundwater in the KVAD under the Stage 2 Area (see Figure 8).

From the flow paths shown in Figure 6, it appears that the subsurface drains are collecting KVAD seepage water that has been diluted by low salinity water entering the area from upstream of the KVAD/R placements. Prior to installation of the subsurface drains in 2010, both bore D5 and Lidsdale Cut had a higher conductivity than in bore D6 because the flow paths also indicate that bore D6 has its conductivity limited by the low salinity up-gradient inflows. The moderate increase in conductivity at D6 since 2010 indicates that the drawdown in the groundwater table by the toe drains and the subsurface drains (shown by the APA10 piezometer, Figure 5) has limited some of the low salinity groundwater from reaching bore D6.

In addition to the changes due to installation of the subsurface drains, EnergyAustralia NSW has advised that in May 2012, the diversion of KVAD/R groundwater to the Lidsdale Cut void appeared to cause the void discharge to discolour Sawyers Swamp Creek with an aluminium deposit. Accordingly, EnergyAustralia NSW was requested by the NSW EPA to seal the discharge pipes in April, 2012 to prevent the void water from entering the creek. By the end of June, 2012 seepage water from the blocked Lidsdale Cut was found to have surfaced in Dump Creek, so pumping of the water from the void to the SSCAD, via the return canal, (Figure 2) began in July, 2012. The Lidsdale Cut water level has been controlled ever since.

4. Stage 1 and Stage 2 Dry Ash Placement Effects on Groundwater Quality

This Section assesses the likely effects, if any, of the capped Stage 1 KVAR and the current KVAR Stage 2 dry ash placement on the local groundwater quality. Effects identified in Section 3 on the local surface water and groundwater by the subsurface drains, the SSCAD seepage collection and return system and diversion of the Lidsdale Cut discharge to the SSCAD are taken into account. In addition, the effects on local groundwater, if any, of the Springvale mine water discharge to Sawyers Swamp Creek are also considered.

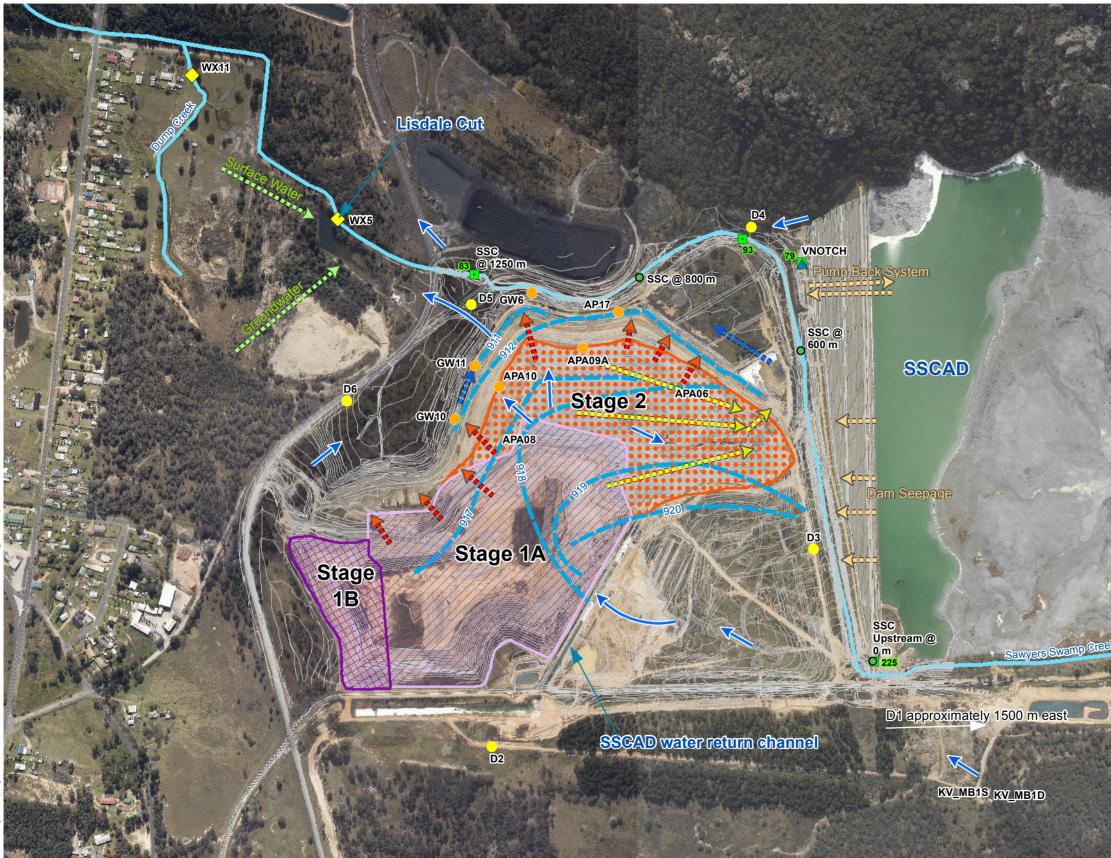
The aim of the seepage collection and diversion system management measures is for the receiving water quality at the groundwater bore WWGM1/D5 and in Sawyers Swamp Creek (WX7) to meet the local/ANZECC (2000) guideline trigger values for the characteristics defined in Table 1 during the post-dry ash placement periods. This presupposes any exceedances of the trigger values in the receiving waters by non-ash related changes in the area, such as increased background concentrations or the influence of the Springvale mine water discharge, can be taken into account.

Long-term trends in water quality and trace metals are examined for changes from pre- to post-dry ash placement in the following groundwater bores:

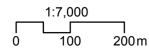
- SSCAD seepage detection bores, WGM1/D3 and D4
- KVAD/R groundwater seepage detection bores WGM1/D5 and D6.

Groundwater quality changes at all the bores are compared to changes in the background bores, D1 and D2 and Lidsdale Cut. The overall effects on the final receiving water site in Sawyers Swamp Creek at WX7 are also included.

As discussed in Section 1.1, a seepage collection and pump-back system was installed on the SSCAD v-notch seepage to minimise effects of the ash dam on Sawyers Swamp Creek and the local groundwater quality. However, residual effects of seepage from the ash dam pond under the dam wall on bores D3 and D4 have to be taken into account as they are up-gradient of the Stage 2 placement and may affect the groundwater flowing into the placement area.


4.1 Groundwater Flow Directions

The groundwater flow directions are used to help explain why groundwater quality changes occur in the groundwater under and around the KVAD/R, as well as potential effects of seepage into Sawyers Swamp Creek. The flow directions were examined in previous reports because it was shown that the conductivity in the Lidsdale Cut was reduced to be similar to that at bore D5 when the sub-surface drains under the Stage 2 Area were first connected to the KVAD toe drains. In addition, bore D5 samples the groundwater seepage on its way to Sawyers Swamp Creek, which is nearby (Figure 2).


Figure 6 shows the groundwater level contours and overall, indicative, groundwater flow paths in the ash placement areas. The level contours have changed from those of the previous report due to the ongoing drawdown of the water table under the KVAR by the toe drains and subsurface drains. The indicative KVAD/R seepage flow paths to the KVAD toe drains and toward the low point of the Lidsdale Cut are shown. Seepage from the KVAD, under the KVAR that is intercepted by the toe

drains, is also shown. Any seepage that is not collected by the subsurface drains or the toe drains is shown as flowing to the local groundwater in Figure 6. The SSCAD dam wall seepage to Sawyers Swamp Creek that is not collected by the v-notch pump-back system is shown as flowing to the local groundwater in Figure 6.

Projection: GDA 1994 MGA Zone 56

Figure 6: Kerosene Vale Ash Dam and Stage 1 and Stage 2 Dry Ash Repository Groundwater Level (RL m) with Inferred Flow Directions (from sketch provided by Lend Lease Infrastructure to EnergyAustralia)

Legend

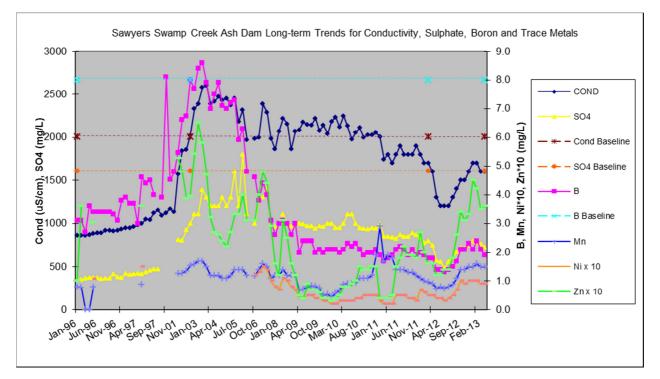
•	KVAD/KVAR piezometer & groundwater bores
	EA NSW groundwater bores
•	Lend Lease SSC Sites
	VNOTCH
\diamond	Surface water sampling
•	EA NSW Monitoring Locations
	Groundwater Contours 2013
•••••	KVAR Stage II seepage
••••	Dam seepage
•••••	KVAR Sub-Surface Drains
•••••	KVAD Toe Drain
•••••	Flow to Lisdale Cut
<	Groundwater Flow Direction
KVAD)
777	Stage 1A
	Stage 1B
****	Stage 2
Sour	ce: Aurecon, EnergyAustralia

EnergyAustralia Wallerawang Power Station

The piezometer water level changes and the groundwater contours provided by LLI show that the unblocked toe drains have drawn the ash placement groundwater level to below the assumed KVAD clay capping level of RL918m² along the western and northern wall (Figure 6). This drawdown is consistent with the decrease in water level in the KVAD, under the dry ash placement, by over 2m (as measured at the piezometer APA10, see Figures 5 and 6). However, in the south-eastern area, groundwater mounding has increased from a maximum height of RL917m in 2012 to RL918 to RL919m in 2013.

These changes in the water level contours indicate that some rainwater infiltration is being retained above the clay capping. From these observations, it appears that the subsurface drains installed under the south-eastern section of the Stage 2 area (Figure 1) are taking groundwater from under the clay capping and sending it to the low point of the eastern drainage system (as indicated by the yellow arrows in Figure 6). The reversed groundwater flow direction in this area (the blue arrow) also indicates that some of the water above the clay capping is flowing to the eastern low point. Groundwater from the low point is directed into the KVAD toe drains and Lidsdale Cut.

Since unblocking of the toe drains and installation of the subsurface drains, the groundwater flow directions, the likely sources of groundwater and effects on the water quality in bores D5 and D6, as well as in the Lidsdale Cut have become clearer, based on the following observations:


- Groundwater in the KVAD, under Stages 1 and 2, is flowing toward Sawyers Swamp Creek
- Although seepage water from the SSCAD (the main flow now collected at the v-notch and pumped back into the dam pond) most likely affects the groundwater at D4 on the right abutment of the ash dam wall, the lower groundwater level of RL906m means it is unlikely to significantly affect the KVAD/R groundwater. The flow paths shown in Figure 6 indicate that the groundwater at bore D4 mainly flows to Sawyers Swamp Creek
- Groundwater sampled by bore D3 on the left abutment is less affected by the SSCAD seepage water (Section 4.3) and the groundwater is diluted by inflows of near pristine groundwater (but low pH water) from up-gradient of the borehole site
- Background groundwater for the KVAD/R is measured at bores D2 and D3, which are upgradient of the KVAD. The D2 and D3 up-gradient sources appear to flow into the KVAD, under the KVAR, where it dilutes the KVAD water as it is collected by the toe drains and subsurface drains and sent to Lidsdale Cut. Bore D1 is up-gradient of the SSCAD and its flow appears to dilute the D3 groundwater which samples seepage from the SSCAD into the D3 area
- Some of the up-gradient water appears to flow around the southern edge of the KVAD where it dilutes KVAD seepage flowing toward bore D6
- Effects of residual seepage from the SSCAD and KVAD/R on water quality in Sawyers Swamp Creek, if any, appear to be dominated by the effects of the discharge flows from the Springvale coal mine.

4.2 Sawyers Swamp Creek Ash Dam Water Quality

The changes in water quality in the SSCAD, from the time wet ash slurry ash placement was stopped in 2003, to the current Stage 2 periods is shown in Table 3. The Selenium concentration decreased by an order of magnitude from 0.15 mg/L to 0.009 mg/L and is less than the ANZECC (2000) guideline in the v-notch seepage water. Long-term trends in conductivity and sulphate, as well as the trace metals boron, manganese, nickel and zinc are shown in Figure 7.

 $^{^{\}rm 2}$ The KVAR is placed on the clay capping of the KVAD.

Figure 7: Sawyers Swamp Creek Ash Dam Long-term Trends in Conductivity, Sulphate, Boron and Trace Metals

Figure 7 shows the following changes since 2003:

- The conductivity and sulphate and boron concentrations have all decreased since 2003
- Concentrations of manganese, nickel and zinc decreased to 2010
- Manganese and zinc concentrations increased following the summer 2010/11 flood, but not as much as first thought in the previous report, and further increases occurred for zinc after the subsequent February/March, 2012 flood, together with an increase in nickel and continued increased levels of manganese
- The conductivity recovered after the February/March, 2012 decrease as did sulphate and boron, with a continued increase in zinc.
- The trace metal increases suggest that the large inflows of freshwater infiltrated the ash deposit and leached the trace metals and selenium from the ash into the water in the dam. Although the reason for the nickel and zinc to remain elevated into 2012/13 is not known, their concentrations in the v-notch discharge were not elevated (see Table 3). Ongoing monitoring may provide some insight into the processes taking part in the ash dam.

The water quality and trace metal data collected from the v-notch seepage is expected to represent the residual seepage from the base of the dam wall. The average concentrations in Table 3 show that all the elements, except boron, were lower than the local surface water or groundwater goals (Table 1) and that a significant increase in concentrations in Sawyers Swamp Creek or bores D3 or D4 near the base of the dam wall is unlikely to be caused.

The SSCAD seepage detection bores, WGM1/D3 and D4, are located down-gradient of the SSCAD and up-gradient of the KVAD and KVAR Stage 1 and Stage 2 dry placement areas (Figure 1). Bore D3 samples groundwater affected by ash dam seepage from near the left abutment of the ash dam wall and bore D4 samples the right abutment. The conductivity and salinity at D3 has always been lower than at D4 (Table 5) as it is diluted by inflows of low salinity groundwater from up-gradient of the SSCAD (see flow paths in Figure 6).

Changes in the SSCAD seepage detection bores have been assessed using data from pre-placement 90th percentile baselines (before May, 2003 at bore D4) and the background bore, D2. This data has been compared to the post-placement medians for periods of Stage 1, including capping since April, 2009 (May, 2003 to March, 2010) and during the Stage 2A dry ash placement (April, 2010 to January, 2012) and the current Stage 2 placement (February, 2012 to March, 2013), as shown in Table 5.

As bore D4 is located near the lower section of Sawyers Swamp Creek, where it passes the dam wall and the V-notch seepage, the water quality and trace metals at this bore are expected to show any effects of residual seepage from the dam wall since the v-notch pump back system was installed. To assess changes in bore D4 during the current period, the medians have been compared to those during previous periods together with its 90th percentile baseline in Table 5.

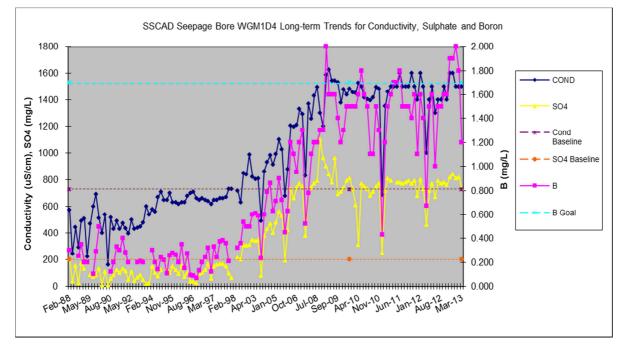

Element (mg/L)		SSC	AD Seepag	e Affected B	ores		V-Notch	Back- ground	D4 Baseline (Pre-Stage I	ANZECC Guideline
(Stage 1 & May, 2003 March, 20	B to	Stage 2A placeme 2010 to 3 2012)	nt (April,	Stage 2 F placemen (Februar) March, 20	nt y, 2012 to	Seepage February, 2012 to March, 2013	(February , 2012 to March, 2013)	90 th Percentile)	Goals for Groundwater
	D3	D4	D3	D4	D3	D4	SSCAD	D2	D4	
pН	6.2	5.9-8	5.9	5.8	6.1	5.7	7.2	4.9	6.8	6.5-8.0
Cond (µS/cm)	693	1276	746	1500	540	1500	1629	320	728	2600
TDS	430	1120	450	1200	330	1200	1195	215	510	2000
SO4	110	720	115	770	68	770	712	100	201	1000
CI	82	27	105	33	66	35	44	22	45	350
Cu	0.005	0.0008	0.002	0.001	0.004	0.003	0.003	0.003	0.010	0.005
Fe	0.10	46.50	0.03	43.0	4.2	39.0	0.05	0.01	86	1.7
Mn	0.63	17.0	0.73	18.0	0.80	16.5	0.02	0.49	6.5	1.9
В	0.03	1.20	0.03	1.50	0.02	1.55	2.2	0.01	0.49	1.7
F	0.05	0.05	0.05	0.10	0.10	0.10	1.21	0.10	0.24	1.5
Ni	0.130	0.040	0.130	0.050	0.12	0.040	<0.01	0.050	0.023	0.137
Se	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.005
Zn	0.065	0.080	0.140	0.080	0.070	0.065	0.04	0.075	0.060	0.505

Table 5: Median Water Quality for SSCAD V-notch Seepage and Seepage affected Groundwater
bores during Post-Stage 1 and Post-Stage 2 Compared to the Groundwater Background,
Seepage Bore WGM1/D4 Baseline and Groundwater Guidelines or Goals

The summary data in Table 5 shows:

- The bore D3 conductivity and salinity is now lower than during the Stage 1 period and the trace metals have shown no significant changes other than an increase in iron
- The bore D4 conductivity and salinity have increased slightly since Stage 1 and are similar to that measured in the V-notch seepage.
- The trace metals at D4 have shown no notable changes since Stage 1 and are mostly higher than measured at the V-notch. The higher concentrations of boron and fluoride at the V-notch appear not to have affected the D4 concentrations, as evidenced by the low fluoride at both groundwater bores. If the SSCAD seepage was the cause of the elevated boron at D4 (1.2 to 1.55 mg/L), the effects of the seepage should have appeared at bore D3 as an increase above that in the KVAD/R upgradient bore D2. However, there was no such increase.

Long-term changes in conductivity, sulphate and boron at bore D4 are shown in Figure 8. Comparison with the changes in the SSCAD in Figure 7 shows the effect of the early SSCAD increases before dry ash placement began in 2003. Although the SSCAD levels began to decrease from 2005 (Figure 7), the conductivity, sulphate and boron concentrations in the D4 bore (Figure 8) continued to increase to have similar levels as those in the SSCAD and consistently exceeded their baselines, except during rainfall events. The lack of a trend for decrease in conductivity, sulphate and boron at D4 since 2010 indicates that installation of the v-notch pump-back system has not provided an improvement in groundwater quality. This is not unexpected, as most of the v-notch discharge flowed down the creek, and did not infiltrate into the surrounding area. The concentrations in D4 are almost exclusively influenced by seepage from the wider area of the ash dam pond into the local groundwater. The main improvement from the installation of the v-notch pump-back system could be expected to occur on the surface water quality in Sawyers Swamp Creek (See Section 4.6).

Figure 8 - Sawyers Swamp Creek Ash Dam Seepage Detection Bore WGM1/D4 Long-term Trends in Conductivity, Sulphate and Boron

In summary, Figure 8 shows that the conductivity, sulphate and boron in the SSCAD seepage detection bore D4 showed a steady increase from 2003 to 2008/09, followed by stabilisation at elevated levels. However, Table 3 in Section 3.2 and examination of Sawyers Swamp Creek data in

Attachment 2.8 shows that, prior to the Springvale mine water discharge, there was no evidence of effects of groundwater seepage from the area sampled by bore D4. This is considered to be due to the slow rate of groundwater seepage into Sawyers Swamp Creek relative to the normal catchment inflows.

4.4 KVAD and KVAR Groundwater Quality

The changes in salinity at the groundwater bores WGM1/D5 and D6 were examined in relation to the KVAD/R subsurface drains and the effects on the water quality in the Lidsdale Cut in Section 3.3.1. This Section examines the groundwater quality in these bores in relation to potential effects of the KVAR Stage 2. Changes from pre-placement, during the Stage 1 placement and capping and during the initial Stage 2 dry ash placement are examined.

The understanding of the groundwater flow directions shown in Figure 6 explains how the inflowing up-gradient, low salinity groundwater dilutes the KVAD water that is collected by the toe drains and subsurface drains from under the KVAR. In turn, this is directed to Lidsdale Cut via the unblocked toe drains. Figure 5 shows that the conductivity in both the Lidsdale Cut and bore D5 were reduced to be similar to that at bore D6, shortly after the sub-surface drains were initially connected to the KVAD toe drains. Since then, their salinities have continued to decrease to be less than in bore D6. The continuing decrease indicates that the groundwater level drawdown is depleting the amount of high salinity water present in the KVAD.

The elements that had higher concentrations than the local guidelines during the Stage 2 period are highlighted in blue in Table 4. Table 6 shows that, as a result of the seepage collection and diversion works, the local groundwater quality has changed. During 2010 to 2012, bore D6 had a lower median conductivity and sulphate than in bore D5, but during 2012 to 2013, bore D5 has the lower conductivity and sulphate. In addition, the concentrations of iron, nickel and zinc in bore D5 have decreased and boron, cadmium and copper and now lower than the local guidelines. There were no significant changes in concentrations of the other trace metals, including selenium, which remained low.

In regard to the changes in trace metals in the area, it should be noted that the low pH in bores D5 and D6 indicates pyrite oxidation (Deutsch, 2005) of the residual coal and chitter in the Kerosene Vale mine void underneath the KVAR. Pyrite oxidation and its associated acidification are known to release trace metals into groundwater.

In addition to the changes observed in the local groundwater, the flow directions indicate that bore D5 samples the groundwater seepage from under the KVAR on its way to Sawyers Swamp Creek, which is nearby. Hence, the KVAR subsurface drains, together with the KVAD toe drains, could be expected to improve the salinity in the creek by decreasing the salinity in the local groundwater.

Table 6: Median Water Quality for Dry Ash KVAD/KVAR Groundwater Seepage Bores duringPost-Stage 1, Initial Stage 2 and Stage 2A Compared to Current Groundwater Background BoreWGM1/D2 and Bore WGM1/D5 Baseline and Groundwater Guidelines or Goals

Element (mg/L)	K	VAD & KVAR I	Dry Ash Place	ement Monit	oring Bores		Back- ground	D5 Baseline (Pre-Stage I	ANZECC Guideline
(9, =)	Stage I& Ca to March, 2	ap May, 2003 010	Stage 2A A to January	•	Ongoing February, March, 20	2012 to	February, 2012 to March, 2013	90 th Percentile)	Goals for Ground- water
	D5	D6	D5	D6	D5	D6	D2	D5	
pН	3.6	3.2	3.6	3.2	3.7	3.4	4.9	4.5	6.5-8.0
Cond (µS/cm)	1917	1110	1356	1216	580	1300	320	810	2600
TDS	1600	600	1000	730	430	885	215	550	2000
SO4	1100	350	680	485	240	530	100	328	1000
CI	18	56	15	48	13	47	22	24	350
As	0.001	0.005	0.001	0.001	0.001	0.002	0.001	0.008	0.024
В	4.8	0.80	2.2	0.74	0.80	0.63	0.01	1.7	1.7
Cd	0.0024	0.0004	0.002	0.001	0.001	0.0002	0.0002	0.004	0.001
Cr	0.003	0.0026	0.001	0.002	0.002	0.0015	0.001	0.041	0.004
Cu	0.013	0.003	0.008	0.005	0.003	0.005	0.003	0.058	0.005
Fe	4.85	38.0	1.7	14.5	0.35	54.5	0.01	14.7	1.7
Mn	8.55	3.6	7.5	3.5	3.5	4.45	0.49	2.5	1.9
Мо	0.005	0.008	0.010	0.010	0.01	0.010	0.010	-	0.01
F	1.10	0.20	0.80	0.40	0.60	0.30	0.10	0.65	1.5
Ni	0.830	0.335	0.540	0.350	0.230	0.345	0.050	0.137	0.137
Pb	0.016	0.005	0.007	0.012	0.002	0.002	0.001	0.021	0.010
Se	0.001	<0.001	0.002	0.002	<0.002	0.002	0.002	0.002	0.005
Zn	1.50	0.335	1.10	0.895	0.560	0.920	0.075	0.505	0.505

To clarify the role of KVAR seepage, if any, on the local groundwater and surface water quality, longterm changes for conductivity, sulphate and boron in bore D5, from before dry ash placement, during Stage 1 and to the current Stage 2 placement, are examined in Figure 9. Bore D5 is used as the indicator of potential effects on Sawyers Swamp Creek because it has been shown to sample the groundwater seepage from under the KVAR on its way to the creek.

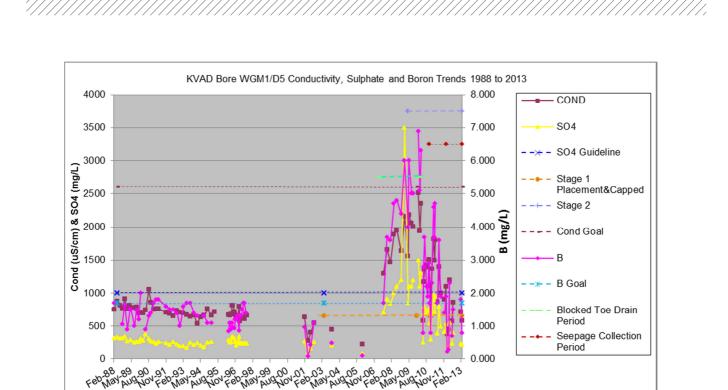


Figure 9: Kerosene Vale Ash Dam Seepage Detection Bore WGM1/D5 Long-term Trends in Conductivity, Sulphate and Boron (Periods for Stage 1 placement and capped since 2003, Stage 2A, including initial Stage 2 since April 2009, Blocked toe drains and Subsurface drain seepage Periods are shown)

Figure 9 shows that the conductivity, sulphate and boron at bore D5 have all decreased since installation of the KVAD/R seepage collection system to be similar to the Stage 1 pre-placement background levels. Other than boron, they have also had concentrations consistently below their respective environmental goals.

As discussed above in Section 3.3.1, the lower concentrations in bore D5 during the Stage 2 period appear to be due to the increased ability of the low conductivity background water to enter the KVAD under the KVAR since installation of the sub-surface drains and unblocking of the KVAD toe drains.

If the KVAR was significantly adding to the groundwater concentrations, they would not have decreased to their background levels. This is supported by the apparent lack of effects of the high rainfall events during summers 2010/11, 2011/12 and 2012/13 (see the rainfall in Section 2.4) on bore D5 concentrations, relative to the large changes seen at bore D4 (Figure 8). Hence, the lower variability at D5 may be due to effective sealing of the KVAD by the combined effects of the dry ash placement on the clay capping, which is on top of the KVAD.

Hence, these observations and trends support the foregoing suggestion that leachates from the dry ash, if any, even with the increased rainfall in recent summers, have not affected the local groundwater. The effects of wet and dry weather on the local groundwater quality and the indicated lack of dry ash leachate effects is expected to be confirmed by ongoing monitoring.

4.5 Lidsdale Cut

This Section assesses the effects of KVAD/R and local groundwater seepage, as well as the diversion systems, on the water quality in Lidsdale Cut. Section 3.3.1 showed that the KVAD/R Stage 2 seepage collection and diversion system was related to a decrease in conductivity in Lidsdale Cut (WX5) as well as at the KVAD seepage detection bore, D5, but not at D6. The relationships of observed water quality and trace metal changes in the Lidsdale Cut are further investigated in this Section.

Table 7 shows water quality changes at Lidsdale Cut from pre-dry ash placement to Stage 1 (capped) and the various Stage 2 periods, including the current ongoing Stage 2 reporting period. These changes are compared to the current period for bore D5 and the groundwater quality changes at bore D5 over the same periods, which are shown in Table 6. This information can be used to confirm the findings from the previous Section on potential inputs from the KVAR to the local groundwater by identifying any links between the KVAD/R groundwater quality and that in the Lidsdale Cut.

Table 7 shows the following changes in the Lidsdale Cut water quality:

- All the water quality parameters and trace metals, including selenium, have lower concentrations than the local/ANZECC (2000) guidelines
- Conductivity and sulphate, as well as the trace metals boron, fluoride, iron, manganese, lead and zinc have decreased to be lower than the pre-placement 90th percentile baselines and nickel is now lower than during the Stage 1 period
- There were no significant changes in concentrations of the other trace metals, including selenium which remained low
- Alkalinity and pH increased, causing the pH to be alkaline for the first time, and even higher than the pre-placement baseline of 6.9.

The alkalinity and pH increases suggest that water from Sawyers Swamp Creek, containing alkaline Springvale Mine water, may have seeped into the Lidsdale Cut void. The increases occurred as early as November, 2011 and may have been due to the water level in the creek being increased by high flows caused by the mine water pipeline leak, which began in July, 2011, aided by a period of high rainfall from November, 2011, and particularly the flooding due to the high rainfall in February and March, 2012. EnergyAustralia NSW confirmed that it is possible that the creek water may have seeped into the void through the surrounding mine spoil.

Table 7: Median Lidsdale Cut Water Quality during Stage 1 and Capping and Stage 2 Dry Ash Placement periods compared to the current Groundwater Quality at Bore WGM1/D5 and relative to the Pre-placement Baseline 90th Percentile and Groundwater Guidelines or Goals

Element (mg/L)	KVAD & KVAR Groundwater (WGM1/D5)			idsdale Cut (WX			
	Ongoing Stage 2 Post- placement (February, 2012-March, 2013)	Pre- Placement (1992-2003) 90 th Percentile	Stage 1 ⋒ Post- placement (May, 2003- March, 2010)	Initial Stage 2 Post- placement (April, 2009- March, 2010)	Stage 2A Post- placement (April, 2010- January, 2012)	Ongoing Stage 2 February, 2012 to June, 2012*	Groundwater Guidelines# or Goals
рH	3.7	6.9	4.3	3.4	4.8	7.3	6.5 - 8.0
Cond/ (µS/cm)	580	952	1178	1965	1011	590	2600^
TDS	430	650	870	1500	740	360	2000
SO4	240	359	580	970	460	160	1000
CI	13	34	18	19	21	13	350
Alk	20	38	30	85	84.5	100	-
As	0.001	<0.001	0.002	0.002	0.002	0.001	0.024
В	0.80	2.16	2.50	5.20	2.4	0.55	1.7
Cd	0.001	<0.001	0.0008	0.0008	0.0013	0.0007	0.001
Cr	0.002	<0.006	0.001	0.0013	0.001	0.001	0.004
Cu	0.003	<0.005	0.003	0.003	0.004	0.0025	0.005
F	0.60	1.99	3.10	6.70	2.60	0.80	1.5
Fe	0.35	0.7	0.54	3.05	0.04	0.12	1.7
Mn	3.5	2.12	3.70	6.30	4.10	0.74	1.9
Мо	0.01	-	0.005	0.010	<0.010	0.010	0.010
Ni	0.230	-	0.375	0.540	0.280	0.030	0.137
Pb	0.002	0.004	0.003	0.003	0.002	0.001	0.01
Se	<0.002	0.001	<0.001	0.001	0.002	0.002	0.005
Zn	0.560	0.304	0.360	1.20	0.520	0.070	0.505

* EnergyAustralia NSW was unable to monitor the water quality in the Lidsdale Cut void from July, 2012 due to drawdown of the void water level by the pumps that direct the water to the SSCAD.

The above mentioned Lidsdale Cut decreases in water quality parameters during the current Stage 2 period corresponded with similar decreases in the conductivity and sulphate in bore D5. Most of the trace metals decreased in both the Lidsdale Cut void and in bore D5, with the exception of manganese, nickel and zinc, which remained higher in the D5 groundwater.

These observations are consistent with dilution of the poor water quality in the KVAD, underneath the KVAR, as well as at bore D5, with inflows of low salinity and trace metals from the up-gradient

background areas (Figure 6). The diluted groundwater is collected by the KVAD/R toe drains and subsurface drains and directed to Lidsdale Cut, thereby causing the decreases in concentrations noted above. In addition, some mine water would continue to seep into the void, but under the conditions during the reporting period, the Lidsdale Cut trace metals remained low. As a result, the Lidsdale Cut trace metal concentrations, including selenium, now all meet the local/ANZECC (2000) guideline trigger values.

Figure 10 shows the long-term trends for conductivity, sulphate and boron in Lidsdale Cut. As mentioned in previous reports, the water quality improved as a result of the unblocking of the toe drains in February, 2010 and subsequent installation of the sub-surface drains.

A comparison of Figures 9 and 10 shows similar changes in conductivity, sulphate and boron in the Lidsdale Cut as in bore D5 since 2001. However, in June, 2012, following the prevention of discharge from Lidsdale Cut to Sawyers Swamp Creek in April, 2012, the concentrations of these parameters increased to be above those in bore D5. The sharp increase in concentrations was associated with a decrease in alkalinity and pH to acidic conditions, which suggests that local mine water was entering the void in increased amounts, possibly due to the initial drawdown of the Lidsdale Cut void water level. These water quality changes were also associated with a period of dry weather, after the summer flood, and suggest that the inflows from the KVAD/R drains, as well as mine water seepage from the creek, into the void are determined by rainfall runoff conditions.

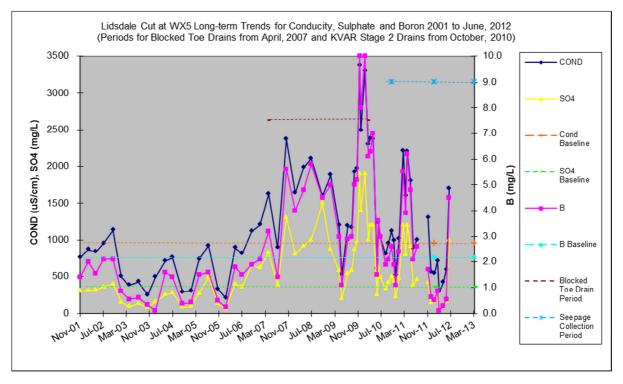


Figure 10: Lidsdale Cut Long-term Trends in Conductivity, Sulphate and Boron from 2001 to June, 2012 Compared to the Pre-Stage I Baselines (Periods for Blocked toe drains from April, 2007 and KVAR Stage 2 Sub-surface drains from October, 2010 are shown)

Lidsdale Cut was stopped from discharging to Sawyers Swamp Creek and the water has been pumped out to the SSCAD via the ash slurry return pipeline since July, 2012. Although the void is the low point for collection of groundwater flows in the area and it also receives the sub-surface water

from the KVAD/R drains, EnergyAustralia NSW has advised that the water level is now kept lower than the level of Sawyers Swamp Creek. Under these conditions, it is possible that the creek water could seep into the void, particularly during high rainfall events, and be pumped out together with the groundwater flows and the sub-surface drain water to the SSCAD. It is also possible that there will be additional seepage into Lidsdale Cut from the overburden deposits at the back of the void. This means that Lidsdale Cut has ceased to provide an early warning of groundwater changes or potential effects on the Sawyers Swamp Creek receiving waters. Hence, it is suggested that water quality in the void no longer needs to be sampled as part of the routine sampling program.

4.6 Sawyers Swamp Creek

Changes in the water quality and trace metals at the Sawyers Swamp Creek receiving water site (WX7) were assessed in Section 3 in relation to the inputs of seepage water from under the SSCAD wall and seepage from the current Stage 2 dry ash KVAD/R ash placements, as well as the Lidsdale Cut discharge until mid-2012. The effects of the Springvale mine water pipeline leak since July, 2011, and its licenced discharge since August, 2012 were also assessed. As WX7 is the final receiving water site for the ash placement areas, this Section examines the overall effects of surface and groundwater seepage on the WX7 receiving waters.

Figure 11 shows the trends for conductivity, sulphate and boron at WX7 from before conversion from wet to dry ash to the current Stage 2 placement period. The trends are compared to the conductivity in the SSCAD (reduced by half to allow direct comparison with the WX7 conductivity on the same scale), as well as the various ash placement management periods that may have affected the water quality at WX7. These include:

- The period when the KVAD toe drains were found to be blocked and subsequently unblocked to allow the KVAD seepage water to drain to Lidsdale Cut
- Springvale Mine water pipeline leak and constant discharge periods
- SSCAD v-notch seepage pump-back, and
- KVAD/R subsurface drain seepage collection and diversion to Lidsdale Cut.

The concentrations of conductivity, sulphate and boron all decreased from their peaks after the toe drains were unblocked, which showed the potential effects of the KVAD/R seepage on the creek without a seepage collection system. The SSCAD pump-back system was installed about the same time the toe drains were unblocked and this was followed soon after by the KVAD/R subsurface drains.

The more recent water quality data has clarified the role of the SSCAD seepage on the water quality at the Sawyers Swamp Creek receiving water site, WX7. Prior to installation of the seepage works in mid-2010 and early 2011, the WX7 creek site conductivity tended to follow that of the SSCAD conductivity. After installation of these systems, the WX7 conductivity decreased in August, 2012 to its lowest level since the late 1990s. However, the SSCAD conductivity also decreased during this period, and the WX7 conductivity continued to follow that of the SSCAD trend. The main differences between WX7 and the SSCAD trends during this period was a large decrease, followed by an increase at WX7, relative to the SSCAD. These changes at WX7 were mostly due to heavy rainfall followed by the mine water pipeline leaks. Since the mine water pipeline discharge became continuous in August, 2012, the WX7 conductivity increased and, as a consequence, there is no current link between the SSCAD conductivity trend and that at WX7.

Since the mine water discharge to the creek became continuous, the concentrations of sulphate and boron at WX7 have decreased to below their respective goals or pre-KVAR baselines, but the

conductivity has increased again to about 1,000 μ S/cm. The conductivity is now similar to that of the mine water (Table 4). As noted in Section 3, the conductivity increase was due to the relatively high conductivity in the mine water, which is mostly due to the high concentration of alkaline salts, rather than sulphate (Table 3).

Table 3 also shows that, although WX7 is downstream of Dump Creek (WX11), the elevated concentrations of sulphate (701 mg/L) and boron at (2.68 mg/L) at WX11 did not prevent the mine water from diluting the WX7 concentrations to low levels. This supports the view that the mine water flow rate is much higher that the local catchment runoff or the combined seepage rates from the SSCAD and the KVAD/R ash placement areas. This is further supported by the WX11 conductivity of 1519 μ S/cm, which was diluted at WX7 to about 1,000 μ S/cm by the mine water.

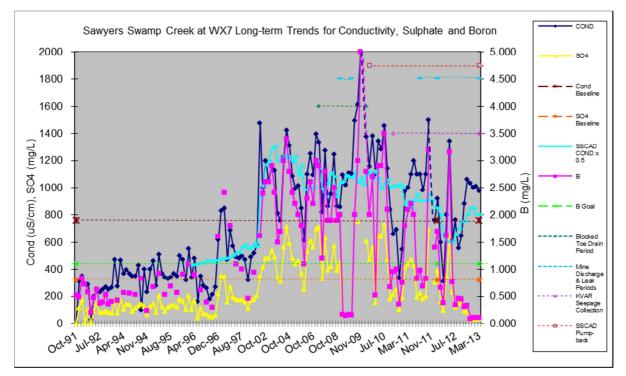


Figure 11: Sawyers Swamp Creek Long-term trends in Conductivity, Sulphate and Boron in relation to baseline and goals and the SSCAD Conductivity (halved) and Periods shown for the blocked KVAD toe drains, Springvale Mine water discharge and pipeline leak, SSCAD pumpback and KVAD/R seepage collection and diversion to Lidsdale Cut

4.7 Overall Effects of Groundwater Seepage from Ash Placements on Sawyers Swamp Creek Receiving Waters

From the above considerations, the following overall effects of groundwater seepage from the KVAD/R and SSCAD on the WX7 receiving waters, qualified by the local background conditions and the Springvale Mine water, are:

• Prior to August, 2012, the SSCAD seepage dominated the conductivity conditions in Sawyers Swamp Creek other than during high rainfall events and the previous Springvale Mine water pipeline leak and the recent continuous discharge to the creek. Water quality, including

conductivity, continued to meet the local/ANZECC (2000) guideline goals and there was no evidence of effects of the seepage on trace metals at WX7.

- After unblocking of the toe drains and installation of the KVAD/R subsurface drains, there
 were no detectable effects of the Stage 1 and Stage 2 dry ash placements on water quality
 and trace metals in the creek
- Although the KVAD/R north wall seepage caused a small increase in the sulphate, and possibly boron, in the creek, the sulphate continued to meet the local/ANZECC (2000) guideline goal. The naturally elevated boron levels in the creek were diluted by the Springvale Mine water discharge to below its local goal concentration
- Lidsdale Cut water quality and trace metals met all the local/ANZECC (2000) guideline goals. Accordingly, it is unlikely to have affected the creek receiving waters
- Copper and chromium (as well as aluminium) temporarily increased at WX7 due to local mine spoil seepage after the February/March, 2012 flood
- Springvale Mine water discharge now dominates most of the water quality conditions in the upper (above KVAD/R) and lower (below KVAD/R and Lidsdale Cut) Sawyers Swamp Creek. The discharge lowered the concentrations of boron and zinc at WX7 to below the local goals. An increase in copper and molybdenum occurred at the time of the continuous mine water discharge in the upper creek and the increases were also evident at WX7.

5. Discussion

The Sawyers Swamp Creek Ash Dam seepage, and possibly some input from the associated groundwater bore D4, was confirmed as the main determinant of the conductivity in Sawyers Swamp Creek prior to the Springvale mine water discharge, but always met the local/ANZECC guidelines and had no significant effects on trace metals. These conditions have since been surpassed by the Springvale Mine water discharge.

The mine water has completely altered the water quality and trace metals in the creek, but other than increases in copper and molybdenum, the creek water quality downstream of the SSCAD v-notch has continued to meet the local/ANZECC guidelines. As the mine water discharge is expected to continue indefinitely, monitoring of the SSCAD v-notch water quality will be the only means of defining the potential effects of the ash dam seepage on the creek. In addition, the water quality in the SSCAD itself may change, or may already be in the process of changing, as a result of the diversion of the KVAD/R groundwater and Lidsdale Cut water to the ash dam.

As the Springvale Mine water quality is poorly understood, it is suggested that EnergyAustralia NSW test the mine water for trace metals at detection limits lower than the ANZECC (2000) guidelines to confirm effects, if any, on the creek. This is particularly important in regard to understanding the effects of the KVAD/R seepage into the creek.

Notwithstanding the Springvale Mine water discharge, it was apparent that the KVAD/R Seepage has not significantly affected the conductivity or salinity in Sawyers Swamp Creek. Although the trace metal concentrations in the KVAD/R north wall seepage are unknown, the creek data indicates that the seepage was unlikely to significantly affect the concentrations in the creek. To confirm this view, it is suggested that EnergyAustralia NSW test the north wall seepage water for trace metals as well as water quality. As the Springvale Mine water now dominates the water quality and trace metals in the creek, definition of the KVAD/R seepage water quality and trace metal concentrations is needed to allow an effective understanding of potential effects on Sawyers Swamp Creek.

Repair of the KVAD toe drains and installation of sub-surface drains under the KVAR has drawn down the groundwater and in the process appears to have depleted the poor water quality in the KVAD. As a result, the water quality and trace metals in bore D5 and Lidsdale Cut (the receptacle of the drains) has continued to improve. Consequently, the KVAR Stage 1 and Stage 2 dry ash placements did not significantly increase the salinity and trace metal concentrations in the local groundwater, and as a consequence, was not expected to affect the conditions in Sawyers Swamp Creek. Hence, other than the effects of the local background conditions and the mine water, the water quality and trace metal concentrations were lower than the Local/ANZECC (2000) guidelines in the creek's receiving waters.

The February/March, 2012 flood caused groundwater from the local coal mine spoil to seep into Sawyers Swamp Creek in May, 2012, which made the water acidic and increased the concentrations of conductivity, sulphate and trace metals at the WX7 receiving water site. The trace metal increases did not occur in Sawyers Swamp Creek upstream of Lidsdale Cut, in Lidsdale Cut itself or in Dump Creek, so it is considered unlikely that the increases were related to the KVAD/R Stage 1 and Stage 2 ash placements or Lidsdale Cut. As a result of this event, the Lidsdale Cut discharge was stopped and pumped to Sawyers Swamp Creek Ash Dam but it appears that the effects on Sawyers Swamp Creek were inappropriately assigned to the Lidsdale Cut discharge rather than local mine spoil groundwater seepage.

As the Lidsdale Cut discharge has been stopped and the water is pumped out of the void, Lidsdale Cut could cease to be the early warning site for potential effects of groundwater seepage on Sawyers Swamp Creek. Hence, it is suggested that water quality monitoring in the void may no longer be needed.

The dominant effect of the Springvale Mine water discharge on the Sawyers Swamp Creek receiving water site means that WX7 ceases to be useful as the final receiving water site for the KVAR. This would leave only bore D5 as the site for indication of potential effects on the Sawyers Swamp Creek receiving waters for the KVAR. However, it would be prudent to retain the existing water quality monitoring in Sawyers Swamp Creek so that EnergyAustralia NSW is not incorrectly assigned effects of the local coal mine conditions and the Springvale Mine water discharge.

In summary, the key points from the assessment are:

- SSCAD confirmed as contributing conductivity and salinity to Sawyers Swamp Creek, but does not exceed the local/ANZECC guidelines for water quality and trace metals
- KVAD unblocking of the toe drains and installation of the subsurface drains have reduced effects on the local groundwater quality to an acceptable level, when the background conditions are taken into account.
- KVAR on evidence of significant effects on surface or groundwater quality.
- Springvale Mine water discharge the water quality conditions in Sawyers Swamp Creek now overridden by the mine water discharge but, other than copper and molybdenum, the creek continued to meet the local/ANZECC guidelines for water quality and trace metals.

The finding for effects on Sawyers Swamp Creek at the receiving water site had to take into account the increase in trace metals due to local coal mine spoil seepage into the creek after the heavy rainfall event of February/March, 2012.

The findings of this assessment of effects of the Stage 1 and Stage 2 dry ash KVAR placements and the Sawyers Swamp Creek Ash Dam seepage on the surface and groundwater, taking into account the number of management changes (toe drains, subsurface drains, SSCAD v-notch pump-back and Lidsdale Cut stopped discharge) and the beginning of the continuous Springvale Mine water discharge, lead to the following conclusions:

- The SSCAD seepage was associated with a decrease in conductivity in Sawyers Swamp Creek in line with that in the SSCAD until the Springvale Mine water discharge began, after which the conductivity increased and the water quality and trace metals also changed. All the water quality and trace metal concentrations in the creek, downstream of the ash dam v-notch, met the local/ANZECC guideline concentrations, with the exception of copper and molybdenum, which became elevated at the time of the mine water discharge
- KVAD/R North Wall seepage had no observable effects on the conductivity in Sawyers Swamp Creek, and like that upstream at the SSCAD, was also decreasing until the beginning of the Springvale Mine water discharge.
- All the water quality and trace metal concentrations in the creek downstream of the KVAD/R seepage met the local/ANZECC guideline concentrations, with the exception of molybdenum. Both the upstream and downstream molybdenum concentrations were similar and the increases both occurred in October, 2012, shortly after the mine discharge began in August, 2012. However, it is noted that there was no trace metal data for the KVAD/R seepage, so it was recommended that the seepage be tested for trace metals
- The conductivity in Lidsdale Cut and in the groundwater at bore D5 decreased together following reinstatement of the toe drains and installation of the subsurface drains. The improvement in conductivity has continued as the groundwater level in the KAVD/R has decreased.
- Unblocking of the KVAD toe drains, installation of the KVAR sub-surface drains and diversion of the groundwater to Lidsdale Cut provided conditions that reduced the salinity (conductivity), sulphate and trace metals in:
 - The local groundwater at bore D5
 - Lidsdale Cut
 - Sawyers Swamp Creek receiving water site, which had the water quality and trace metal concentrations lower than the Local/ANZECC (2000) guidelines other than effects of the local background conditions and the Springvale Mine water.
- High rainfall during the Stage 2 period introduced high concentrations of trace metals from the local mine spoil into Sawyers Swamp Creek downstream of Lidsdale Cut, causing the receiving waters to exceed some of the local environmental goals.
- Although the water quality data indicates that the KVAR ash placement management effectively controls dry ash leachates from affecting the local groundwater and surface water quality, the advent of the continuous Springvale Mine water discharge has compromised future assessment of potential effects on the Sawyers Swamp Creek receiving water site. As a consequence, appropriate changes to the monitoring program are advisable.

7. Recommendations

From the study findings and the domination of the water quality in Sawyers Swamp Creek by the discharge of water from the Springvale Mine, the following recommendations are made:

- Continue monthly water quality monitoring at the EnergyAustralia NSW routine groundwater monitoring sites and make the following changes to the surface water monitoring:
 - Water quality monitoring in the Lidsdale Cut void to cease as part of the routine sampling program
 - Retain the existing water quality monitoring in Sawyers Swamp Creek to avoid assignment of the local coal mines and Springvale Mine water discharge to KVAD/R and/or SSCAD
 - Monitor the Springvale mine water for trace metals at detection limits lower than the ANZECC (2000) guidelines to confirm effects, if any, on the creek
 - Continue to monitor the SSCAD water quality and the v-notch discharge to define the potential effects on Sawyers Swamp Creek
 - Monitor the KVAD/R north wall seepage water for trace metals as well as water quality
 - Silver be removed from the sampling program.

8. References

ANZECC,1995. Guidelines for Groundwater Protection in Australia. National Water Quality Management Strategy, Commonwealth of Australia. Australian and New Zealand Environmental Conservation Council, ACT.

ANZECC, 2000. Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environmental Conservation Council, ACT.

APHA, 1998. American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition.

Aurecon, 2010. KVAD Stage II Water Quality Assessment October, 2007 to March, 2010. Draft Report to Energy Delta Electricity Western 18th June, 2010

Aurecon, 2012 Kerosene Vale Ash Dam and Dry Ash Repository KVAR Stage 2A Water Quality Assessment April, 2010 to January, 2012. Report to Delta Electricity Western 9th October, 2012

Connell Wagner, 2008. Kerosene Vale Ash Dam Groundwater November, 2001 to July, 2007. Report to EnergyAustralia NSW Western, 15th February, 2008

DEC, 2004. Approved Methods for the Sampling and Analysis of Water Pollutants in New South Wales. Prepared by NSW Environment Protection Authority (EPA) and is published by Department of Environment and Conservation, NSW (DEC) on behalf of the EPA. March, 2004

Deutsch, WJ 2005. Groundwater Geochemistry: Fundamentals and Applications to Contamination Second Ed., Lewis Publishers

NEPC, 1999 (updated in May, 2013). National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council, Canberra.

PB, 2008. Kerosene Vale Stage 2 Ash Repository Area Environmental Assessment Technical Reports 1 – Groundwater and 2 – Surface Water. Parsons Brinckerhoff Australia Report to EnergyAustralia NSW , April, 2008

PPI, 1999. Mt Piper Ash/brine co-disposal pilot field test. Pacific Power International Report GO 129, 1999 to EnergyAustralia NSW

Attachment 1

Lithgow Rainfall Data

Lithgow Rainfall Data from January, 2000 to March, 2013 (mm/month) from Bureau of Meteorology

Year(s)	January	February	March	April	May	June	July	August	September	October	November	December	Annual
2000	57	22.2	271.4	50.6	53.4	32.2	2 37.4	51.2	43	75	i 119.2	2 59	871.6
2001	105.4	90.6	89.6	84.4	28.8	9	63.2	30.8	46.4	58.8	80) 26.6	713.6
2002	87.8	187	69.4	40.2	. 67.6	22.6	6 16.8	17	21.2	: 3	22	2 47.2	601.8
2003	3.6	135	41.8	38.4	54	43.2	2 20.6	0	18.6	82.4	12	68.8	627.4
2004	35	98.2	22.4	10.4	35.2	16.2	2 30.2	50.8	34.8	118.4	113.8	88.6	654
2005	102.8	104.6	55.8	28.6	5 14.2	117.2	2 59.2	24.6	87.6	116.5	159.4	48.4	918.9
2006	146.6	32.6	6.4	6.8	6.8	6.8	3 54.2	5.8	59.2	3.2	32.2	2 72.7	433.3
2007	92.6	5 141.4	72.1	44.6	56.6	223	<mark>8</mark> 24.9	65.4	ç	37.8	134.7	67	969.1
2008	102	84.6	47.6	59.8	8 11	60.9	37.1	43.6	88.2	66.2	83.3	3 113.2	797.5
2009	25.2	165.8	28	74.5	6 80.9	44.5	5 35.9	48.8	63	69	23.6	81.5	740.7
2010	76.4	119.2	85.1	35.8	54.4	40.9	9 73.5	73.5	52.4	70.9	122.8	3 164.6	969.5
2011	114	57.2	77.2	41.2	2 51.2	72.4	24.6	58.7	78.4	46.2	168	3 96	885.1
2012	57.1	152.6	189.8	44.4	30.6	81.8	8 49.8	21.2	48.6	20.8	30.9	9 64.1	791.7
2013	64.1	113.2	184.2										

Attachment 2

Wallerawang Power Station Ash Dam Surface Water and Groundwater Quality Stage 2 from Feburary, 2012 to March, 2013

Attachment also contains:

- Pre-Dry Ash Placement Summary data before April, 2003 and;
- LLI Sawyers Swap Creek Data from Feburary, 2010 to March, 2013

NOTE: Post-Dry Ash Placement Stage 1 and initial Stage 2 Raw Data and Summary statistics are in previous reports:

- Stage 1 Data from May, 2003 to July, 2007 in Connell Wagner, 2008
- Initial Stage 2 data from August/October, 2007 to April, 2010 in Aurecon, 2010)
- Stage 2A Water Quality Assessment from April, 2010 to January, 2012 in Aurecon (2012)

Post Dry Ash Placement Stage 2 Raw Data and Summary Statistics from February, 2012 to March, 2013:

- 1. Water Quality Data and Summary for Sawyers Swamp Creek WX7 and Background at Dump Creek WX11
- 2. Water Quality Data and Summary for Lidsdale Cut WX5
- 3. Water Quality Data and Summary for Sawyers Swamp Creek at WX1, upstream of SSCAD. EANSW site 92
- Water Quality Data and Summary for SSCAD Groundwater Seepage Detection Bores WGM1/D3 and 1/D4
- 5. Water Quality Data and Summary for Background Groundwater Bore WGM1/D2
- 6. Water Quality Data and Summary for KVAD and KVAR Stage I and II Dry Ash Placements Seepage Detection Groundwater Bores WGM1/D5 and 1/D6
- 7. Water Quality Data and Summary for SSCAD (includes data from April, 2010 to January, 2012)

8. Water Quality Data and Summary for Sawyers Swamp Creek Monitoring from SSCAD Spillway to near WGM4/D5

Sawyers Swamp Creek EANSW & LLI WQ monitoring February, 2010 to March, 2013, including:

- Sawyer Swamp Creek at WX1, upstream SSCAD. EANSW Site 92
- Sawyers Swamp creek upstream @0 m where SSCAD diversion and Springvale Mine Water from August, 2012 enters SSC at spillway

- Sawyers Crk upstream @600 m downstream of Spillway but upstream of Ash Dam seepage from V-notch
- Sawyers Swamp Creek Ash Dam Seepage from V-notch (water collected and recycling back into dam)
- Sawyers Swamp Creek at @850m upstream seepage from KVAD wall and Below SSCAD vnotch Seepage Point. EANSW Site 93 from June, 2012
- Sawyers Swamp Creek at 1250 m near GW Bore D5. EANSW Site 83
- KVAD/R Seepage water Northern wall collection pit near GW6 Groundwater from the KVAD on the northside drains

1. Water Quality Data and Summary for Sawyers Swamp Creek WX7 and Background at Dump Creek WX11

Sawyers Sv	vamp Cre	ek WX7 Pr	e-Dry Ash	Placemer	t Summar	y 1991-Ap	ril, 2003 (m	ng/L)										
	Ag	AI	ALK	As	В	Ва	Ве	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	0.001	0.274	22	0.001	0.919	0.037		20	0.001	19	44042	0.001	0.004	0.612	0.291	0.0001	12	15
Maximum	<0.01	0.647	84	<0.05	2.900	0.045		57	<0.002	82	147800	<0.01	0.009	3.100	0.927	0.0002	36	39
Minimum	0.001	0.105	5	0.001	0.205	0.030		4	0.001	6	3000	0.001	0.001	0.110	0.050	0.0001	1	4
90th Percentile	0.001	0.4927	33	0.001	2.331	0.043		38	0.001	27	76000	0.001	0.007	1.1	0.507	0.0002	27	22

a) SAWYERS SWAMP CEEK AT WOLGAN ROAD BRIDGE WX7 (mg/L)

*Outliers

Continued.	Sa	wyers Sv	vamp Creek V	VX7 Pre-Dr	y Ash Plac	ement Su	ummary 199	91-April, 2	2003 (mg/L	.)					
	Mn	Мо	NO2+NO3	Na	NFR	Ni	Ortho P	Pb	рН	Se	SiO2	SO4	TDS	TOT P	Zn
Average	0.635		0.061	40	21		0.006	0.002	7.0	0.002	12.2	160	308	0.017	0.099
Maximum	1.510		0.199	120	326		0.031	<0.01	9.3	<0.006	75.0	540	800	0.093	0.342
Minimum	0.153		0.009	11	2		0.001	0.001	6.1	0.001	0.1	38	20	0.001	0.004
90th Percentile	0.829		0.1158	86	23		0.013	0.003	7.6	0.003	22.4	323	584	0.047	0.153

*Outliers

Sawyers Sv	vamp Cre	ek WX7 P	ost-Stage	2A Ash Pla	cement D	ata (mg/l)	February,	2012 to N	larch, 2013.									
Date	Ag	AI	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
22-Feb-12	0.001	20.5	114	0.004	0.66	0.043		24	0.0019	12	601	0.003	0.006	1.5	0.005	0.00005	14.5	13.1
8-Mar-12	0.001	3.4	24	<0.001	0.38	0.036		13.7	0.00055	11	313	<0.001	0.002	0.5	0.01	0.00005	8.96	7.19
19-Apr-12	0.001	18.2	4	0.001	1.63	0.034		37.2	0.0029	16	800	0.002	0.005	2.9	0.08	0.00005	29	17.5
23-May-12	0.001	272	12	0.01	3.16	0.056		68.5	0.0075	19	1342	0.055	0.026	8.9	0.034	0.00005	54.4	30.7
21-Jun-12	0.001	2.7	38	<0.001	0.77	0.034		26.8	0.0003	18	612	<0.001	0.002	0.6	0.015	0.00005	11.2	20.8
27-Jul-12	0.001	1.2	272	0.002	0.34	0.025		14.3	0.0002	12	763	<0.001	0.002	0.7	0.049	0.00005	8.87	10.6
15-Aug-12	0.001	6.3	97	0.006	0.46	0.046		18.6	0.0002	16	555	0.002	0.004	0.7	0.031	0.00005	8.83	12
13-Sep-12	0.001	5.8	148	0.003	0.45	0.046		20.2	0.0002	16	647	0.002	0.004	0.9	0.025	0.00005	10.4	11.2
11-Oct-12	0.001	1.3	395	0.003	0.31	0.023		13.5	0.0002	10	883	<0.001	0.003	1.0	3.04	0.00005	11.1	8.19
14-Nov-12	0.001	0.4	479	0.006	0.33	0.019		12.3	0.0002	7	1061	<0.001	0.002	1.4	0.073	0.00005	12.8	8.25
12-Dec-12	0.001	0.3	513	0.013	0.09	0.018		5.97	0.0002	6	1032	<0.001	0.001	1.2	0.009	0.00005	11.8	2.98
17-Jan-13	0.001	0.3	515	0.011	0.10	0.017		5.8	0.0002	5	998	<0.001	0.002	1.1	0.087	0.00005	11.3	2.73
21-Feb-13	0.001	0.2	512	0.012	0.11	0.014		6.35	0.0002	5	1011	<0.001	0.001	1.3	0.085	0.00005	10.5	2.91
13-Mar-13	0.001	0.2	481	0.011	0.10	0.017		5.86	0.0002	5	977	<0.001	0.078	1.3	0.084	0.00005	11.9	3.32

Continued	Sav	vyers Swa	mp Creek W	X7 Post-St	age 2A As	h Placeme	ent Data (m	g/l) Febru	uary, 2012	to March,	2013.				
Date	Mn	Мо	NO2+NO3	Na	NFR	Ni	Ortho P	Pb	рН	Se	SiO2	SO4	TDS	TOT P	Zn
22-Feb-12	0.604	0.003	0.25	85.2	102	0.076		0.004	7.61	<0.002		157	354	0.06	0.344
8-Mar-12	0.468	0.005	0.3	30.8	26.5	0.037		<0.001	7.11	<0.002		95	156.25	0.03	0.098
19-Apr-12	1.88	0.003	0.25	91.2	51.2	0.143		0.001	5.24	0.001		351	562	<0.01	0.361
23-May-12	3.67	0.01	0.25	132	1088	0.281		0.015	4.6	0.002		648	1046	0.1	0.924
21-Jun-12	1.6	0.003	0.25	63.4	20.9	0.084		0.001	7.08	<0.002		229	442	0.02	0.226
27-Jul-12	0.648	0.009	0.3	142	34	0.034		<0.001	8.14	<0.002		118	508	0.02	0.088
15-Aug-12	0.602	<0.001	0.25	79.7	67.1	0.059		0.002	7.34	0.001		158	382	0.06	0.346
13-Sep-12	0.001	0.001	0.25	115	45.2	0.032		0.003	7.63	<0.002		148	408	0.06	0.183
11-Oct-12	0.341	0.018	0.3	211	23.8	0.021		0.001	8.16	0.001		88	598	0.02	0.086
14-Nov-12	0.158	0.022	0.3	239	7.1	0.026		0.001	8.2	<0.002		83	654	<0.01	0.071
12-Dec-12	0.014	0.025	0.55	238	12.6	0.007		<0.001	8.63	0.001		29	650	0.02	0.085
17-Jan-13	0.001	0.042	0.45	222	6.79	0.004		0.002	8.16	0.001		27	696	0.06	0.035
21-Feb-13	0.016	0.031	0.4	284	3	0.007		<0.001	8.47	0.001		29	656	<0.01	0.022
13-Mar-13	0.033	0.024	0.25	240	3.73	0.009		0.004	8.47	0.001		31	636	<0.01	0.037

aurecon Leading. Vibrant. Global.

Sawyers Sv	wamp Cree	ek WX7 Po	ost-Stage	2 Dry Ash I	Placement	February	, 2012 to M	arch, 201	3 (mg/L)									
	Ag	AI	ALK	As	в	Ва	Ве	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	<0.001	23.8	257.4	0.007	0.634	0.031		20	0.0011	11	828	0.0128	0.0099	1.70	0.26	0.00005	15	11
Maximum	<0.001	272.0	515.0	0.013	3.161	0.056		69	0.0075	19	1342	0.0550	0.0780	8.93	3.04	0.00005	54.4	30.7
Minimum	<0.001	0.16	3.8	0.001	0.087	0.014		6	0.0002	5	313	0.0020	0.0010	0.50	0.01	0.00005	8.83	2.73
50th Percentile	0.001	2.03	210.0	0.006	0.359	0.030		14	0.0002	11	841.5	0.0020	0.0025	1.16	0.04	0.00005	11	9.425

Continued	Sa	awyers Sw	amp Creek V	X7 Post-S	tage 2A Dr	y Ash Pla	cement Fe	bruary, 20	012 to Mar	ch, 2013 (mg/L)				
	Mn	Мо	NO2+NO3	Na	NFR	Ni	Ortho P	Pb	рН	Se	SiO2	SO4	TDS	TOT P	Zn
Average	0.72	0.015	0	155	107	0.059		0.003	7.5	0.001		156	553	0.045	0.208
Maximum	3.67	0.042	0.55	284	1088	0.281		0.015	8.6	0.002		648	1046	0.100	0.924
Minimum	0.00	0.001	0.25	31	3	0.004		0.001	4.6	0.001		27	156	0.020	0.022
50th Percentile	0.40	0.010	0.275	137	25	0.033		0.002	7.9	0.001		106	580	0.045	0.093

curecon Leading. Vibrant. Global.

b) Water Quality Data and Summary for Background at Dump Creek WX11

Dump Cree	k WX11 P	re-Dry Asl	h Placeme	ent Backgro	ound Sumr	nary 1991	-April, 2003	3 (mg/L)										
	Ag	AI	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	0.001	0.13	7	0.001	0.64	0.03		32	0.001	23	56732	0.001	0.002	0.539	1.36	0.0002	23	24
Maximum	0.001	0.38	16	0.001	3.30	0.05		71	0.001	83	137113	0.001	0.002	1.200	11.00	0.0002	36	42
Minimum	0.001	0.04	0	0.001	0.04	0.02		18	0.001	8	32000	0.001	0.001	0.200	0.03	0.0002	14	14
90th Percentile	0.001	0.30	15	0.001	1.45	0.05		58	0.001	39	77000	0.001	0.002	1.100	2.38	0.0002	31	35

Continued	Du	mp Creek	WX11 Pre-D	ry Ash Plac	cement Ba	ckground	Summary	1991-Apr	il, 2003 (m	g/L)	
	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	0.63		76	5		0.001	6.6	0.002	209	559	0.09
Maximum	2.20		156	12		0.001	8.0	0.003	593	984	0.32
Minimum	0.09		39	2		0.001	3.6	0.001	88	362	0.00
90th Percentile	1.94		110	8		0.001	8.0	0.003	325	772	0.28

Dump Creek	WX11 Po	st-Dry Ash	Placemer	it Data (mg/	/I) Februa	ry, 2012 to	March, 20)13										
Date	Ag	AI	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	К	Mg
22-Feb-12	0.001	0.5	20	<0.001	2	0.02		55	0.0002	21	1100	0.001	0.002	0.5	0.27	0.00005	24	48
8-Mar-12	0.001	0.21	20	<0.001	0.89	0.016		38	0.0002	18	670	0.001	0.002	0.4	0.33	0.00005	15	25
19-Apr-12	0.001	1.6	20	<0.001	2.6	0.025		62	0.0002	24	1400	0.001	0.003	1.4	3.3	0.00005	28	59
23-May-12	0.001	1.5	20	<0.001	2.8	0.025		68	0.0003	24	1600	0.001	0.005	1.3	6.4	0.00005	31	67
21-Jun-12	0.001	1.1	20	<0.001	2.5	0.027		73	0.0003	26	1400	0.001	0.003	1.1	3.8	0.00005	27	65
27-Jul-12	0.001	0.89	20	<0.001	2.2	0.026		73	0.0002	26	1400	0.001	0.002	0.9	1.2	0.00005	24	64
15-Aug-12	0.001	2.2	20	<0.001	2.8	0.026		81	0.0003	28	1600	0.001	0.005	1.7	4.5	0.00005	30	72
13-Sep-12	0.001	0.49	20	0.001	1.6	0.023		57	0.0002	55	1300	0.001	0.009	0.5	0.89	0.00005	28	50
11-Oct-12	0.001	2	20	<0.001	3	0.024		69	0.0004	24	1500	0.001	0.007	1.6	21	0.00005	30	66
14-Nov-12	0.001	2.3	20	<0.001	3.7	0.039		84	0.0004	25	1900	0.001	0.004	3	11	0.00005	38	76
12-Dec-12	0.001	2.5	25	<0.001	3.5	0.022		82	0.0005	23	1900	0.001	0.005	2	10	0.00005	41	75
17-Jan-13	0.001	4	25	<0.001	3.4	0.038		79	0.0007	29	1800	0.001	0.013	1.8	11	0.00005	38	75
21-Feb-13	0.001	3.3	25	0.001	3.4	0.02		90	0.0006	23	1800	0.001	0.008	2.5	11	0.00005	39	79
13-Mar-13	0.001	2.8	25	<0.001	3.1	0.022		89	0.0006	110	1900	0.004	0.007	0.3	8.8	0.00005	40	79

Continued		Dun	np Creek W	X11 Post-	Dry Ash Pl	acement [Data (mg/l) February	, 2012 to N	March, 201	3
Date	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn
22-Feb-12	4.3	0.01	90		0.27	0.001	3.9	0.002	490	740	0.57
8-Mar-12	1.3	0.01	51		0.1	0.001	6.5	0.002	270	440	0.21
19-Apr-12	5	0.01	110		0.34	0.001	3.4	0.002	620	980	0.85
23-May-12	6.5	0.01	110		0.46	0.001	3.3	0.002	730	1100	1.1
21-Jun-12	6.2	0.01	100		0.39	0.001	3.4	0.002	690	1100	0.9
27-Jul-12	6.3	0.01	94		0.33	0.001	3.5	0.002	670	1000	0.71
15-Aug-12	7.2	0.01	120		0.48	0.001	3.4	0.002	780	1200	1.2
13-Sep-12	4.1	0.01	120		0.16	0.001	3.5	0.002	540	860	0.4
11-Oct-12	6.9	0.01	110		0.49	0.003	3.2	0.002	710	1100	1.3
14-Nov-12	8.5	0.01	130		0.59	0.003	3	0.002	860	1200	1.5
12-Dec-12	8.1	0.01	120		0.6	0.004	3.2	0.002	900	1300	1.6
17-Jan-13	7.6	0.01	110		0.57	0.008	3.1	0.002	820	1200	1.7
21-Feb-13	7.9	0.01	150		0.59	0.004	3.1	0.002	880	1300	1.6
13-Mar-13	8.1	0.01	130		0.62	0.004	3.1	0.002	850	1300	1.7

curecon Leading. Vibrant. Global.

Dump Cree	k WX11 Po	ost-Stage	2 Dry Ash	Placement	February	, 2012 to M	March, 201	3 (mg/L)										
	Ag	AI	ALK	As	В	Ва	Ве	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	<0.001	1.8	21.4	0.001	2.678	0.025		71	0.0004	33	1519	0.0012	0.0054	1.36	6.68	0.00005	31	64
Maximum	<0.001	4.0	25.0	0.001	3.700	0.039		90	0.0007	110	1900	0.0040	0.0130	3.00	21.00	0.00005	41	79
Minimum	<0.001	0.21	<20	0.001	0.890	0.016		38	0.0002	18	670	0.0010	0.0020	0.30	0.27	0.00005	15	25
50th Percentile	<0.001	1.80	20.0	0.001	2.800	0.025		73	0.0003	24.5	1550	0.0010	0.0050	1.35	5.45	0.00005	30	66.5

Continued		.Dump Cr	eek WX11 Po	st-Stage 2	Dry Ash P	lacement	February,	2012 to M	arch, 2013	(mg/L)	
	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	6.29	0.010	110		0.428	0.002	3.5	0.002	701	1059	1.096
Maximum	8.50	0.010	150		0.620	0.008	6.5	0.002	900	1300	1.700
Minimum	1.30	0.010	51		0.100	0.001	3	0.002	270	440	0.210
50th Percentile	6.70	0.010	110		0.470	0.001	3.35	0.002	720	1100	1.150

2. Water Quality Data and Summary for Lidsdale Cut WX5

Lidsdale Cu	ut WX5 Pr	e-Dry Ash	Placemer	nt Summar	y 1992-Apr	[.] il, 2003 (n	ng/L)											
	Ag	AI	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	0.001	2.43	14	0.001	1.70	0.042		28	0.001	26	74991	0.003	0.003	1.50	0.51	0.0002	39	17
Maximum	0.001	3.17	50	0.001	2.17	0.060		32	0.001	78	113402	0.010	0.005	2.20	1.00	0.0002	53	21
Minimum	0.001	0.70	1	0.001	0.54	0.030		24	0.001	15	37800	0.001	0.002	0.98	0.07	0.0002	16	8
90th Percentile	0.001	3.08	38	0.001	2.16	0.054		31	0.001	34	95200	0.006	0.005	1.99	0.70	0.0002	51	20

Continued	Lid	sdale Cut	WX5 Pre-Dry	y Ash Place	ement Sun	nmary 199	2- April, 20	003 (mg/l)			
	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	1.41		62	7		0.003	4.7	0.001	266	518	0.219
Maximum	2.34		84	15		0.004	6.9	0.001	400	671	0.397
Minimum	0.21		31	3		0.002	3.2	0.001	92	400	0.072
90th Percentile	2.12		77	13		0.004	6.9	0.001	359	650	0.304

Lidsdale Cu	t WX5 Post	t-Dry Ash	Placemen	t Data (mg/	l) Februa	ry, 2012 to	March, 20	13										
Date	Ag	AI	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
22-Feb-12	0.001	9.2	130	0.002	0.87	0.029		24	0.0015	13	710	0.001	0.003	1.2	<0.01	0.00005	18	11
8-Mar-12	0.001	0.28	85	0.001	0.11	0.032		5.8	0.0002	11	290	<0.001	<0.001	0.2	0.23	0.00005	4	4
19-Apr-12	0.001	1.4	110	0.001	0.29	0.032		11	0.0002	13	420	<0.001	0.002	0.5	0.02	0.00005	7	7
23-May-12	0.001	3.5	100	0.001	0.55	0.037		19	0.0007	15	590	0.001	0.002	0.8	0.02	0.00005	10	10
21-Jun-12	<0.001	65	20	<0.001	4.5	0.032		93	0.016	21	1700	0.011	0.02	13	0.22	<0.00005	72	36
27-Jul-12																		
15-Aug-12																		
13-Sep-12																		
11-Oct-12																		
14-Nov-12																		+
12-Dec-12																		+
17-Jan-13																		+
21-Feb-13																		<u> </u>
13-Mar-13																		+

Continued	Lidsda	le Cut WX5	Post-Dry	Ash Place	ement Data	a (mg/l) Fe	bruary, 20	12 to Mare	ch, 2013		
Date	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn
22-Feb-12	1	0.01	110		0.08	0.001	7.3	0.002	190	420	0.2
8-Mar-12	0.045	0.01	54		0.01	0.001	8	0.002	38	150	0.03
19-Apr-12	0.26	0.01	76		0.01	0.001	7.6	0.002	83	280	0.03
23-May-12	0.74	0.01	84		0.03	0.001	7.2	0.002	160	360	0.07
21-Jun-12	5.4	<0.01	100		0.44	0.002	4.2	0.003	1000	1600	1.2
27-Jul-12											
15-Aug-12											
13-Sep-12											
11-Oct-12											
14-Nov-12											
12-Dec-12											
17-Jan-13											
21-Feb-13											
13-Mar-13											

Lidsdale Cu	ut WX5 Po	st-Stage 2	2 Dry Ash	Placement	February,	2012 to M	larch, 2013	(mg/L)										
	Ag	AI	ALK	As	В	Ва	Ве	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	<0.001	15.9	89.0	0.001	1.264	0.032		31	0.0037	15	742	0.0043	0.0068	3.14	0.12	0.00005	22	14
Maximum	<0.001	65.0	130.0	0.002	4.500	0.037		93	0.0160	21	1700	0.0110	0.0200	13.00	0.23	0.00005	72	36
Minimum	<0.001	0.28	20	0.001	0.110	0.029		6	0.0002	11	290	0.0010	0.0020	0.20	0.02	0.00005	4	4
50th Percentile	<0.001	3.50	100.0	0.001	0.550	0.032		19	0.0007	13	590	0.0010	0.0025	0.80	0.12	0.00005	10	10

Continued	Lid	sdale Cut	WX5 Post-St	age 2 Dry	Ash Place	nent Febr	ruary, 2012	to March	, 2013 (mg	/L)	
	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	1.49	0.010	85		0.114	0.001	6.9	0.002	294	303	0.306
Maximum	5.40	0.010	110		0.440	0.002	8	0.003	1000	420	1.200
Minimum	0.05	0.010	54		0.010	0.001	4.2	0.002	38	150	0.030
50th Percentile	0.74	0.010	84		0.030	0.001	7.3	0.002	160	320	0.070

3. Water Quality Data and Summary for Sawyers Swamp Creek at WX1, upstream of SSCAD. EANSW site 92

Sawyers Swamp Creek Upstream of SSCAD WX1 Post-Dry Ash Placement Data (mg/l) February, 2012 to March, 2013																		
Date	Ag	AI	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
10-Mar-92		0			0.042					8.0	3000				0.435			

Continued Sawyers Swamp Creek Upstream of SSCAD WX1 Post-Dry Ash Placement Data (mg/l) February, 2012 to March, 2013												
Date	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn	
10-Mar-92	0.068										0.040	

Sawyers Swamp Creek Upstream of SSCAD WX1 Post-Dry Ash Placement Data (mg/l) February, 2012 to March, 2013																		
Date	Ag	AI	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
30-Mar-12	<0.001	0.5	31	<0.001	0.05	0.02		2.5	<0.0001	11	140	<0.001	0.002	<0.1	0.77	<0.00005	3	<1
20-Apr-12	<0.001	0.39	36	<0.001	0.04	0.022		2.9	<0.0002	10	130	<0.001	0.002	<0.1	0.72	0.00006	3	<1
09-May-12																		
27-Jun-12	<0.001	0.67	28	<0.001	0.03	0.023		3.6	<0.0002	9	120	<0.001	0.003	<0.1	0.3	<0.00005	3	2
26-Jul-12	<0.001	0.34	28	<0.001	0.03	0.014		2.9	<0.0002	8	130	<0.001	0.001	<0.1	0.31	<0.00005	2	1
15-Aug-12	<0.001	0.2	31	<0.001	0.03	0.011		2.9	<0.0002	9	140	<0.001	0.002	<0.1	0.38	<0.00005	2	1
14-Sep-12	<0.001	1.3	35	<0.001	0.03	0.079		5.7	<0.0002	9	150	<0.001	0.005	<0.1	0.5	<0.00005	6	1
11-Oct-12	<0.001	0.6	35	<0.001	0.02	0.027		2.5	<0.0002	8	130	<0.001	0.002	<0.1	3.9	<0.00005	2	<1
14-Nov-12	<0.001	0.2	40	<0.001	0.03	0.014		2.6	<0.0002	8	150	<0.001	0.002	<0.1	1.2	<0.00005	2	<1
12-Dec-12	<0.001	0.75	46	<0.001	0.02	0.035		3.1	<0.0002	9	160	0.004	0.002	<0.1	3.1	<0.00005	3	1
21-Feb-13	<0.001	1.8	<25	<0.001	0.05	0.051		4.5	<0.0002	9	190	<0.001	0.003	<0.1	0.09	<0.00005	4	2
13-Mar-13	<0.001	0.51	<25	<0.001	0.05	0.014		1.4	<0.0002	10	140	<0.001	0.002	<0.1	0.62	<0.00005	2	<1

Continued March, 2013	· · · · ·	rs Swamp	Creek Up	stream of	SSCAD W	X1 Post-D	ry Ash Pla	acement D)ata (mg/l)	February	, 2012 to
Date	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn
30-Mar-12	0.002	<0.01	27	14	<0.01	<0.001	6.3	<0.002	16	99	<0.01
20-Apr-12	0.066	<0.01	26	11	<0.01	<0.001	6.6	<0.002	13	92	0.02
09-May-12											
27-Jun-12	0.005	<0.01	20	34	<0.01	<0.001	6.8	<0.002	16	99	0.04
26-Jul-12	<0.001	<0.01	21	13	<0.01	<0.001	6.7	<0.002	20	85	<0.01
15-Aug-12	0.004	<0.01	25	6.8	<0.01	<0.001	6.8	<0.002	26	81	0.02
14-Sep-12	0.55	<0.01	27	100	<0.01	0.002	6.5	<0.002	22	89	0.05
11-Oct-12	0.35	<0.01	26	19	<0.01	<0.001	6.4	<0.002	20	100	0.01
14-Nov-12	0.04	<0.01	27	6.6	<0.01	<0.001	6.6	<0.002	18	90	0.03
12-Dec-12	1	<0.01	26	45	<0.01	0.001	7	<0.002	17	110	0.04
21-Feb-13	0.29	<0.01	30	110	<0.01	0.002	6.4	<0.002	52	120	0.03
13-Mar-13	0.036	<0.01	27	12	<0.01	<0.001	6.3	<0.002	31	100	0.03

aurecon Leading. Vibrant. Global.

Sawyers Sv	vamp Cree	ek Upstrea	am of SSC	AD WX1 P	ost-Dry As	h Placem	ent Data (n	ng/l) Febr	uary, 2012	to March	, 2013							
	Ag	AI	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	<0.001	0.66	34	<0.001	0.035	0.028		3.1	<0.0002	9	144	0.004	0.002	<0.1	1.08	0.00006	3	1
Maximum	<0.001	1.8	46	<0.001	0.05	0.079		5.7	<0.0002	11	190	0.004	0.005	<0.1	3.9	0.00006	6	2
Minimum	<0.001	0.2	28	<0.001	0.02	0.011		1.4	<0.0002	8	120	0.004	0.001	<0.1	0.09	0.00006	2	1
50th Percentile	<0.001	0.51	35	<0.001	0.03	0.022		2.9	<0.0002	9	140	0.004	0.002	<0.1	0.62	0.00006	3	1

Continued March, 2013		wyers Sw	amp Creek U	pstream of	f SSCAD W	/X1 Post-l	Dry Ash Pla	acement [Data (mg/l)	February	, 2012 to
	Mn	Мо	Na	NFR	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	0.23	<0.01	26	33.8	<0.01	0.002	6.6	<0.002	23	97	0.03
Maximum	1	<0.01	30	110	<0.01	0.002	7	<0.002	52	120	0.05
Minimum	0.002	<0.01	20	6.6	<0.01	0.001	6.3	<0.002	13	81	0.01
50th Percentile	0.053	<0.01	26	14	<0.01	0.002	6.6	<0.002	20	99	0.03

4. Water Quality Data and Summary for SSCAD Groundwater Seepage Detection Bores WGM1/D3 and 1/D4

WGM1/D3 P	Pre-Dry As	sh Placem	ent Summ	ary 1988- <i>i</i>	April, 2003	(mg/L)												
	Ag	ALK	AI	As	В	Ва	Ве	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	0.001	115		0.010	0.05	0.292		18.7	0.001	64	62308	0.009	0.005	0.19	4.9	0.0004	8	20.0
Maximum	0.001	229		0.043	0.22	5.700		31.0	0.001	140	77320	0.026	0.040	0.73	21.0	0.0009	38	28.0
Minimum	0.001	8		0.001	0.005	0.080		6.3	0.001	25	34200	0.001	0.001	0.040	0.5	0.0001	1	2.0
90th Percentile	0.001	154		0.027	0.19	0.150		24.0	0.001	77	72000	0.020	0.010	0.33	9.4	0.0007	9	25.0

a) Water Quality Data and Summary for WGM1/D3

Continued.	w	GM1/D3 P	re-Dry Ash P	lacement S	Summary 1	988- April	, 2003 (mg	/L)				
	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	0.592		69	0.080	0.008	6.0	0.001	94	349	10.0	920.2	0.061
Maximum	1.930		109	0.092	0.074	6.9	0.003	144	660	11.1	921.5	0.200
Minimum	0.080		31	0.071	0.001	4.6	0.001	20	125	8.7	919.1	0.010
90th Percentile	0.710		85	0.089	0.014	6.4	0.002	116	470	10.9	921.3	0.110

WGM1/D3 P	ost-Dry A	sh Plac	ement Da	ata (mg/L)	February,	2012 to M	arch 2013													
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Со	COND	Cr	Cu	F	Fe	Hg	K	Li	Mg
23-Feb-12	0.001	65	1.5	0.006	0.04	0.056		9.3	0.0002	38		370	0.004	0.009	0.1	3.2	0.00005	5		14
30-Mar-12	0.001	92	1.2	0.011	0.03	0.069		12	0.0002	59		490	0.002	0.002	0.1	6.7	0.00005	6		19
20-Apr-12	0.001	100	0.2	0.01	0.02	0.069		14	0.0002	66		540	0.002	0.002	0.1	9.3	0.00005	6		22
9-May-12	0.001	110	0.1	0.005	0.02	0.08		16	0.0002	77		620	0.002	0.003	0.1	7.2	0.00005	6		25
27-Jun-12																				
26-Jul-12	0.001	84	0.67	0.003	0.02	0.071		13	0.0002	65		500	0.003	0.003	0.1	0.41	0.00005	6		19
15-Aug-12	0.001	110	0.22	0.004	0.02	0.076		14	0.0002	74		570	<0.001	0.003	0.1	4.2	0.00005	6		21
14-Sep-12	0.001	110	0.08	0.006	0.02	0.078		17	0.0002	75		600	<0.001	0.002	0.1	0.04	0.00005	7		23
11-Oct-12	0.001	91	0.73	0.008	0.02	0.072		14	0.0002	65		500	<0.001	0.005	0.1	5.1	0.00005	6		20
14-Nov-12	0.001	110	0.12	0.004	<0.01	0.081		16	0.0002	77		620	<0.001	0.015	0.1	1.6	0.00005	7		23
12-Dec-12	0.001	120	0.06	0.002	<0.01	0.087		18	0.0002	81		660	<0.001	0.025	0.1	2.5	0.00005	8		24
16-Jan-13	0.001	110	0.15	0.002	0.04	0.084		16	0.0002	74		590	<0.001	0.088	0.1	5	0.00005	7		23
20-Feb-13	0.001	87	0.25	0.004	0.07	0.069		15	0.0002	56		480	0.001	0.004	0.1	8.2	0.00005	6		20
13-Mar-13	0.001	55	0.4	0.003	0.12	0.07		14	0.0002	47		420	0.001	0.021	0.1	3.2	0.00005	5		17

Continued	WGM	1/D3 Pos	st-Dry A	sh Placen	nent Data (mg/L) Fe	bruary, 20	12 to Mai	rch 2013			
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
23-Feb-12	1	0.01	49	0.14	0.005	5.8	0.002	45	310	9.5	920.70	0.09
30-Mar-12	1.2	0.01	62	0.15	0.002	6.1	0.002	55	350	9.6	920.60	0.07
20-Apr-12	1.1	0.01	69	0.14	0.001	7.4	0.002	60	340	9.8	920.40	0.05
9-May-12	0.8	0.01	65	0.13	0.001	6.3	0.002	66	350			0.07
27-Jun-12												
26-Jul-12	0.58	0.01	60	0.1	0.002	6	0.002	58	310	9.9	920.30	0.09
15-Aug-12	0.64	0.01	66	0.11	0.001	6	0.002	68	370	9.9	920.30	0.1
14-Sep-12	0.63	0.01	72	0.11	0.002	6.4	0.002	73	340	10	920.20	0.22
11-Oct-12	0.57	0.01	66	0.1	0.002	6	0.002	68	300	10	920.20	0.32
14-Nov-12	0.66	0.01	71	0.12	0.001	6.2	0.002	78	330	10.2	920.00	0.04
12-Dec-12	0.71	0.01	76	0.13	0.001	6.1	0.002	81	410	10.3	919.90	0.07
16-Jan-13	0.82	0.01	66	0.14	0.001	6.1	0.002	73	330	10.1	920.10	0.06
20-Feb-13	1	0.01	62	0.11	0.001	6.1	0.002	62	300	9.7	920.50	0.03
13-Mar-13	0.95	0.01	46	0.09	0.001	5.7	0.002	71	280	9.4	920.80	0.05

WGM1/D3 F	Post-Stage	e 2 Dry As	h Placeme	ent Februa	y, 2012 to	March 20 [°]	13 (mg/L)											
	Ag	ALK	AI	As	в	Ва	Ве	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	<0.001	96	0.44	0.0052	0.04	0.074		14	0.0002	66	535	0.0021	0.0140	0.10	4.4	0.00005	6	21
Maximum	<0.001	120	1.50	0.0110	0.12	0.087		18	0.0002	81	660	0.0040	0.0880	0.10	9.3	0.00005	8	25
Minimum	<0.001	55	0.06	0.0020	0.02	0.056		9	0.0002	38	370	0.0010	0.0020	0.10	0.0	0.00005	5	14
50th Percentile	<0.001	100	0.22	0.0040	0.02	0.072		14	0.0002	66	540	0.0020	0.0040	0.10	4.2	0.00005	6	21

Continued.	We	GM1/D3 P	ost-Stage 2 D	ory Ash Pla	cement Fe	bruary, 2	012 to Marc	ch 2013 (r	ng/L)			
	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	0.82	0.010	64	0.121	0.002	6.2	0.002	66	332	9.9	920.3	0.097
Maximum	1.20	0.010	76	0.150	0.005	7.4	0.002	81	410	10.3	920.8	0.320
Minimum	0.57	0.010	46	0.090	0.001	5.7	0.002	45	280	9.4	919.9	0.030
50th Percentile	0.80	0.010	66	0.120	0.001	6.1	0.002	68	330	9.9	920.3	0.070

b) Water Quality Data and Summary for WGM1/D4

WGM1/D4 Pre-Dry As	sh Place	ment Su	mmary 1	988- Aj	oril, 2003 (mg/L)											
Date	Ag	ALK	As	в	Ва	Ве	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	0.001	96	0.003	0.27	0.372		30.0	0.002	30	58408	0.005	0.012	0.15	54.6	0.0009	6	18.9
Maximum	0.001	282	0.012	0.61	6.700		58.0	0.004	86	98969	0.019	0.100	0.72	120.0	0.0033	46	47.0
Minimum	0.001	20.60	0.001	0.07	0.050		16.0	0.001	6.00	16100	0.001	0.001	0.001	0.1	0.0002	0	1.8
90th Percentile	0.001	168	0.006	0.49	0.330		43.8	0.003	45	72780	0.012	0.036	0.24	86.0	0.0020	7	26.8

Continued	WGM	1/D4 Pre-D	Dry Ash Pl	acement S	Summary ?	1988- Apri	l, 2003 (m	g/L)				
Date	Mn	Мо	Na	Ni	Pb	pН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	4.588		29	0.018	0.006	6.3	0.009	118	327	1.3	905.8	0.041
Maximum	12.000		82	0.024	0.022	7.3	0.100	350	768	1.5	906.3	0.100
Minimum	0.094		4	0.011	0.001	5.2	0.001	11	96	0.8	905.3	0.004
90th Percentile	6.500		42	0.023	0.011	6.8	0.002	201	510	1.4	906.0	0.060

WGM1/D4 F	Post-Dry As	sh Placem	ent Data F	ebruary, 2	012 to Ma	rch 2013 (mg/l)												
Date	Ag	ALK	AI	As	в	Ва	Ве	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Li	Mg
23-Feb-12	0.001	20	0.02	0.002	1.4	0.016		98	0.0002	35	1500	0.001	0.001	0.1	39	0.00005	10		67
30-Mar-12	0.001	34	0.16	0.002	0.67	0.034		88	0.0002	33	1000	0.001	0.001	0.1	19	0.00005	9		41
20-Apr-12	0.001	20	0.02	0.002	1.5	0.026		100	0.0002	34	1400	0.001	0.002	0.1	45	0.00005	10		66
9-May-12	0.001	23	0.02	0.002	1.6	0.027		100	0.0002	36	1500	0.001	0.003	0.1	49	0.00005	9		72
27-Jun-12	0.001	37	0.03	0.002	1.0	0.021		93	0.0002	38	1300	0.001	0.003	0.1	49	0.00005	10		59
26-Jul-12	0.001	20	0.01	0.002	1.5	0.021		100	0.0002	35	1400	0.001	0.003	0.1	39	0.00005	12		69
15-Aug-12	0.001	21	0.02	0.002	1.5	0.021		95	0.0002	38	1400	0.001	0.001	0.1	53	0.00005	9		68
14-Sep-12	0.001	20	0.01	0.002	1.6	0.021		100	0.0002	35	1500	0.001	0.002	0.1	43	0.00005	12		69
11-Oct-12	0.001	20	<0.01	0.002	1.6	0.018		100	0.0002	34	1400	0.001	0.003	0.1	89	0.00005	9		70
14-Nov-12	0.001	20	0.01	0.002	1.9	0.021		110	0.0002	33	1600	0.001	0.003	0.1	36	0.00005	10		74
12-Dec-12	0.001	33	0.02	0.002	1.9	0.019		110	0.0002	33	1600	0.001	0.002	0.1	29	0.00005	11		75
16-Jan-13	0.001	32	0.01	0.002	2.0	0.018		110	0.0002	31	1500	0.001	0.004	0.1	28	0.00005	11	1	74
20-Feb-13	0.001	38	0.02	0.002	1.8	0.015		120	0.0002	32	1500	0.001	0.004	0.1	27	0.00005	10	1	79
13-Mar-13	0.001	35	0.45	0.002	1.2	0.023		110	0.0002	38	1500	0.001	0.007	0.1	32	0.00005	10		62

Continued		WGM1/I	D4 Post-Dr	y Ash Pla	acement D	ata Febru	ary, 2012	to Marc	h 2013 (m	g/l)		
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
23-Feb-12	16	0.01	120	0.04	0.001	5.5	0.002	730	1200	1.1	906.02	0.07
30-Mar-12	7.1	0.01	75	0.03	0.001	5.9	0.002	460	770	1.2	905.92	0.05
20-Apr-12	15	0.01	120	0.04	0.001	5.6	0.002	720	1100	1.1	906.02	0.05
9-May-12	17	0.01	110	0.04	0.001	5.7	0.002	770	1200			0.09
27-Jun-12	12	0.01	110	0.03	0.001	5.9	0.002	670	1100	16	891.12	0.07
26-Jul-12	16	0.01	150	0.04	0.001	5	0.002	790	1300	1.1	906.02	0.06
15-Aug-12	16	0.01	110	0.04	0.001	5.4	0.002	770	1200	1.1	906.02	0.07
14-Sep-12	18	0.01	160	0.04	0.001	5.5	0.002	780	1200	1.1	906.02	0.07
11-Oct-12	17	0.01	120	0.04	0.001	5.5	0.002	760	1300	1.1	906.02	0.06
14-Nov-12	19	0.01	130	0.04	0.001	5.6	0.002	820	1300	1.2	905.92	0.06
12-Dec-12	19	0.01	130	0.04	0.001	5.8	0.002	840	1400	1.1	906.02	0.07
16-Jan-13	19	0.01	130	0.04	0.001	5.8	0.002	810	1300	1.1	906.02	0.08
20-Feb-13	18	0.01	150	0.04	0.001	5.9	0.002	820	1300	1	906.12	0.05
13-Mar-13	14	0.01	120	0.03	0.001	5.7	0.002	730	1100	1	906.12	0.06

Date	Ag	ALK	AI	As	в	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	<0.001	27	0.06	0.0020	1.51	0.022		102	0.0002	35	1436	0.0010	0.0028	0.10	41.2	0.00005	10	68
Maximum	<0.001	38	0.45	0.0020	2.00	0.034		120	0.0002	38	1600	0.0010	0.0070	0.10	89.0	0.00005	12	79
Minimum	<0.001	20	0.01	0.0020	0.67	0.015		88	0.0002	31	1000	0.0010	0.0010	0.10	19.0	0.00005	9	41
50th Percentile	<0.001	22	0.02	0.0020	1.55	0.021		100	0.0002	35	1500	0.0010	0.0030	0.10	39.0	0.00005	10	69

Continued	WGM 1	I/D4 Post-	Stage 2A I	Dry Ash P	lacement	February,	2012 to N	larch 2013	3 (mg/L)			
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	15.94	0.010	124	0.038	0.001	5.6	0.002	748	1198	2.2	904.9	0.065
Maximum	19.00	0.010	160	0.040	0.001	5.9	0.002	840	1400	16.0	906.1	0.090
Minimum	7.10	0.010	75	0.030	0.001	5.0	0.002	460	770	1.0	891.1	0.050
50th Percentile	16.50	0.010	120	0.040	0.001	5.7	0.002	770	1200	1.1	906.0	0.065

WGM1/D1 Pre-Dry	1 .	r		1	-							-	-	_	_			
Date	Ag	ALK	As	В	Ва	Be	Ca	Cd	CI	Со	COND	Cr	Cu	F	Fe	Hg	ĸ	Mg
Average	0.001	16	0.002	0.05	0.156		2.4	0.001	48		210	0.016	0.016	0.19	2.3	0.0002	3	2.5
Maximum	0.001	32	0.006	0.35	2.000		19.0	0.003	92		394	0.045	0.170	0.66	15.7	0.0006	10	15.0
Minimum	0.001	1.50	0.001	0.01	0.030		0.0	0.001	15		99	0.001	0.001	0.001	0.0	0.0001	0	0.0
90th Percentile	0.001	24	0.004	0.10	0.090		5.1	0.002	78		305	0.041	0.035	0.41	5.6	0.0004	6	5.0

5. Water Quality Data and Summary for Background Groundwater Bore WGM1/D1 and WGM1/D2

Continued	WGN	/11/D1 Pre	-Dry Ash	Placeme	ent Backgr	ound Dat	ta 1988-Aj	oril, 2003	(mg/L)			
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	0.37		27		0.010	5.3	0.002	4	143	4.0	944.0	0.078
Maximum	1.00		65		0.035	6.8	0.003	31	302	6.1	946.3	0.230
Minimum	0.05		8		0.001	4.2	0.001	0	50	1.9	942.1	0.012
90th Percentile	0.66		44		0.018	5.9	0.002	9	215	5.3	945.0	0.122

WGM1/D1 Po	st-Dry Ash	Placem	ent Data	a February	2012 to Ma	arch 2013														
Date	Ag	ALK	AI	As	В	Ba	Be	Ca	Cd	CI	Co	COND	Cr	Cu	F	Fe	Hg	к	Li	Mg
23-Feb-12	0.001	20	0.42	0.001	0.06	0.048		1.4	0.0002	12		120	0.006	0.004	0.1	0.03	0.00005	4		3
30-Mar-12	0.001	20	0.57	0.001	0.07	0.058		1.7	0.0001	19		120	0.005	0.004	0.1	0.03	0.00005	5		4
20-Apr-12	0.001	20	0.48	0.001	0.07	0.057		2	0.0002	16		120	0.003	0.003	0.1	0.04	0.00005	4		4
9-May-12	0.001	21	0.29	0.001	0.06	0.052		2.3	0.0002	12		120	0.001	0.002	0.1	0.02	0.00005	3		4
27-Jun-12	0.001	20	0.75	0.001	0.04	0.05		1.4	0.0002	14		110	0.001	0.004	0.1	0.01	0.00005	4		4
26-Jul-12	0.001	20	0.47	0.001	0.04	0.046		1.3	0.0002	14		120	0.001	0.002	0.1	0.01	0.00005	3		4
15-Aug-12	0.001	20	0.2	0.001	0.03	0.033		0.88	0.0002	10		100	0.001	0.001	0.1	0.01	0.00005	2		2
14-Sep-12	0.001	20	6.9	0.001	0.02	0.08		1.1	0.0002	15		110	0.005	0.02	0.1	0.06	0.00005	3		2
11-Oct-12	0.001	20	1.8	0.001	0.01	0.037		1.2	0.0002	17		120	0.001	0.004	0.1	0.43	0.00005	2		2
14-Nov-12	0.001	20	0.76	0.001	<0.01	0.034		1.2	0.0002	20		120	0.001	0.005	0.1	0.05	0.00005	2		2
12-Dec-12	0.001	25	0.95	0.001	<0.01	0.036		1.6	0.0002	22		130	0.001	0.027	0.1	0.03	0.00005	2		2
16-Jan-13	0.001	25	0.15	0.001	0.56	0.029		31	0.0002	22		140	0.001	0.015	0.1	0.01	0.00005	5		23
20-Feb-13	0.001	25	0.33	0.001	0.03	0.039		2.1	0.0002	20		130	0.001	0.014	0.1	0.06	0.00005	4		2
13-Mar-13	0.001	25	0.12	0.001	0.07	0.085		2	0.0002	21		180	0.001	0.006	0.1	0.01	0.00005	5		6

Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
23-Feb-12	0.11	0.01	15	0.001	0.001	5.9	0.002	17.0	99	1.7	946.42	0.04
30-Mar-12	0.31	0.01	14	0.001	0.001	5.6	0.002	13.0	89	1.7	946.42	0.04
20-Apr-12	0.44	0.01	13	0.001	0.001	7.2	0.002	13.0	60	1.7	946.42	0.04
9-May-12	0.65	0.01	12	0.001	0.001	6	0.002	13.0	60			0.05
27-Jun-12	0.31	0.01	13	0.001	0.001	6	0.002	12.0	50	1.7	946.42	0.05
26-Jul-12	0.32	0.01	14	0.001	0.001	6.5	0.002	13.0	91	1.7	946.42	0.03
15-Aug-12	0.15	0.01	13	0.001	0.001	5.8	0.002	13.0	75	2.4	945.72	0.03
14-Sep-12	0.04	0.01	17	0.001	0.014	5.7	0.002	11.0	80	2.9	945.22	0.11
11-Oct-12	0.2	0.01	17	0.001	0.001	5.8	0.002	10.0	84	3.2	944.92	0.07
14-Nov-12	0.38	0.01	18	0.001	0.001	5.9	0.002	10.0	81	3.7	944.42	0.07
12-Dec-12	0.68	0.01	19	0.001	0.001	5.7	0.002	11.0	110	3.9	944.22	0.14
16-Jan-13	0.99	0.01	46	0.02	0.001	5.9	0.002	11.0	69	4.3	943.82	0.1
20-Feb-13	1.1	0.01	18	0.001	0.001	5.9	0.002	6.0	76	3.7	944.42	0.18
13-Mar-13	0.069	0.01	22	0.001	0.001	5.5	0.002	12.0	140	1.7	946.42	0.06

WGM1/D1 Post-Sta	ige 2 Dry A	sh Plac	ement	February	2012 to	March 201	3 (mg/L)												
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Co	COND	Cr	Cu	F	Fe	Hg	K	Mg
Average	<0.001	22	1.01	0.0010	0.09	0.049		4	0.0002	17		124	0.0021	0.0079	0.10	0.1	0.00005	3	5
Maximum	<0.001	25	6.90	0.0010	0.56	0.085		31	0.0002	22		180	0.0060	0.0270	0.10	0.4	0.00005	5	23
Minimum	<0.001	20	0.12	0.0010	0.01	0.029		1	0.0001	10		100	0.0010	0.0010	0.10	0.0	0.00005	2	2
50th Percentile	<0.001	20	0.48	0.0010	0.05	0.047		2	0.0002	17		120	0.0010	0.0040	0.10	0.0	0.00005	4	4

Continued	WGN	/1/D1 Pos	st-Stage 2	Dry Ash	Placeme	nt Februa	ry, 2012 t	o March 2	2013 (mg/	Ľ)		
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	0.41	0.010	18	0.002	0.002	6.0	0.002	12	83	2.6	945.5	0.072
Maximum	1.10	0.010	46	0.020	0.014	7.2	0.002	17	140	4.3	946.4	0.180
Minimum	0.04	0.010	12	0.001	0.001	5.5	0.002	6	50	1.7	943.8	0.030
50th Percentile	0.32	0.010	16	0.001	0.001	5.9	0.002	12	81	2.4	945.7	0.055

WGM1/D2 Pre-Dry A	Ash Place	ement B	ackgrou	Ind Sum	mary 1988	- April, 20	003 (mg/L))										
Date	Ag	ALK	As	В	Ва	Be	Ca	Cd	CI	Со	COND	Cr	Cu	F	Fe	Hg	К	Mg
Average	0.007	14	0.001	0.05	0.173		1.6	0.001	36	0.017	25534	0.013	0.007	0.17	1.1	0.0003	2	5.2
Maximum	0.020	138	0.002	0.30	3.000		13.0	0.001	104	0.021	44536	0.048	0.080	0.75	13.0	0.0009	5	16.0
Minimum	0.001	0.00	0.001	0.005	0.010		0.0	0.001	9.00	0.014	9720	0.001	0.001	0.001	0.03	0.0001	0	0.0
90th Percentile	0.016	24	0.001	0.10	0.114		5.0	0.001	48	0.020	31000	0.041	0.010	0.28	1.7	0.0007	4	9.0

Continued	WGN	/11/D2 Pre	-Dry Ash	Placeme	ent Backgi	round Da	ta 1988-A	pril, 2003	(mg/L)			
Date	Mn	Мо	Na	Ni	Pb	pН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	0.301		32	0.027	0.008	4.6	0.001	45	160	5.9	914.3	0.067
Maximum	0.800		66	0.032	0.074	5.6	0.001	102	345	8.7	917.6	0.180
Minimum	0.035		11	0.023	0.001	2.9	0.001	6	10	2.7	911.5	0.012
90th Percentile	0.442		42	0.031	0.010	5.4	0.001	61	258	7.3	917.2	0.114

WGM1/D2 Po	st-Dry Ash	Placem	ent Data	a February,	2012 to Ma	arch 2013														
Date	Ag	ALK	AI	As	В	Ba	Be	Ca	Cd	CI	Co	COND	Cr	Cu	F	Fe	Hg	К	Li	Mg
23-Feb-12	0.001	20	0.29	0.001	0.01	0.039		1.2	0.0002	17		290	0.001	0.002	0.1	0.01	0.00005	4		20
30-Mar-12	0.001	20	0.39	0.001	0.01	0.039		1.2	0.0002	16		280	0.001	0.002	0.1	0.01	0.00005	5		20
20-Apr-12	0.001	20	0.35	0.001	0.02	0.039		1.1	0.0002	17		280	0.002	0.002	0.1	0.01	0.00009	4		20
9-May-12	0.001	20	0.32	0.001	0.02	0.044		1.2	0.0002	21		300	0.001	0.003	0.1	0.02	0.000089	4		23
27-Jun-12	0.001	20	0.27	0.001	0.01	0.041		1.4	0.0002	20		310	0.001	0.003	0.1	<0.01	0.00016	4		23
26-Jul-12	0.001	20	0.27	0.001	0.01	0.04		1.4	0.0002	22		320	0.001	0.003	0.1	0.01	0.00008	4		24
15-Aug-12	0.001	20	0.37	0.001	0.01	0.041		1.5	0.0002	23		330	0.001	0.003	0.1	0.01	0.00005	4		23
14-Sep-12	0.001	20	0.24	0.001	0.01	0.04		1.5	0.0002	26		320	0.001	0.002	0.1	0.02	0.00007	4		21
11-Oct-12	0.001	20	0.21	0.001	0.01	0.041		1.5	0.0002	26		320	0.001	0.007	0.1	0.09	0.00008	4		21
14-Nov-12	0.001	20	0.27	0.001	0.05	0.043		2.3	0.0002	30		430	0.001	0.006	0.1	0.06	0.00006	4		24
12-Dec-12	0.001	25	0.45	0.001	0.01	0.045		1.3	0.0002	22		330	0.001	0.005	0.1	0.01	0.00005	5		21
16-Jan-13	0.001	25	0.29	0.001	0.07	0.041		2.1	0.0002	33		430	0.001	0.007	0.1	1.2	0.00005	4		21
20-Feb-13	0.001	25	0.38	0.001	0.02	0.041		1.2	0.0002	25		320	0.002	0.006	0.1	0.03	0.00005	4		20
13-Mar-13	0.001	25	0.28	0.001	0.03	0.042		1.4	0.0002	21		340	0.001	0.002	0.1	0.01	0.00005	5		21

Continued	WGM1/	D2 Post-l	Dry Ash F	Placement	Data Febru	ary, 2012	to March 2	013				
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
23-Feb-12	0.42	<0.01	17.00	0.04	0.001	5	0.002	89	230	3.1	917.10	0.07
30-Mar-12	0.41	<0.01	18.00	0.05	0.001	5.1	0.002	88	190	3.2	917.00	0.06
20-Apr-12	0.41	0.01	18.00	0.04	0.001	5.8	0.002	88	170	4.4	915.80	0.05
9-May-12	0.43	0.01	19.00	0.04	0.001	4.9	0.002	91	180			0.08
27-Jun-12	0.5	<0.01	19.00	0.05	0.001	5	0.002	100	190	4	916.20	0.08
26-Jul-12	0.52	<0.01	21.00	0.05	0.001	5	0.002	110	220	4.3	915.90	0.07
15-Aug-12	0.54	<0.01	20.00	0.05	0.001	4.8	0.002	110	220	4.8	915.40	0.08
14-Sep-12	0.5	<0.01	25.00	0.05	0.001	4.9	0.002	95	190	7.3	912.90	0.07
11-Oct-12	0.52	<0.01	26.00	0.05	0.001	4.7	0.002	100	190	7.4	912.80	0.07
14-Nov-12	0.73	<0.01	38.00	0.08	0.001	4.3	0.002	140	250	7.8	912.40	0.1
12-Dec-12	0.47	<0.01	23.00	0.05	0.001	4.9	0.002	100	220	4.2	916.00	0.08
16-Jan-13	0.65	<0.01	39.00	0.07	0.001	4.2	0.002	130	240	7.8	912.40	0.11
20-Feb-13	0.41	<0.01	30.00	0.05	0.001	4.9	0.002	94	210	6.6	913.60	0.06
13-Mar-13	0.45	<0.01	28.00	0.05	0.001	4.7	0.002	100	240	3.1	917.10	0.08

WGM1/D2 Post-Sta	ge 2 Dry A	sh Plac	ement	February	2012 to	March 201	3 (mg/L)												
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Co	COND	Cr	Cu	F	Fe	Hg	K	Mg
Average	<0.001	21	0.31	0.0010	0.02	0.041		1	0.0002	23		329	0.0011	0.0038	0.10	0.11	0.00007	4	22
Maximum	<0.001	25	0.45	0.0010	0.07	0.045		2	0.0002	33		430	0.0020	0.0070	0.10	1.20	0.00016	5	24
Minimum	<0.001	20	0.21	0.0010	0.01	0.039		1	0.0002	16		280	0.0010	0.0020	0.10	0.01	0.00005	4	20
50th Percentile	<0.001	20	0.29	0.0010	0.01	0.041		1	0.0002	22		320	0.0010	0.0030	0.10	0.01	0.00006	4	21

Continued	WGN	/1/D2 Pos	st-Stage 2	Dry Ash	Placeme	nt Februa	ry, 2012 t	o March 2	2013 (mg/	Ľ)		
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	0.50	0.010	24	0.051	0.001	4.9	0.002	103	210	5.2	915.0	0.076
Maximum	0.73	0.010	39	0.080	0.001	5.8	0.002	140	250	7.8	917.1	0.110
Minimum	0.41	0.010	17	0.040	0.001	4.2	0.002	88	170	3.1	912.4	0.050
50th Percentile	0.49	0.010	22	0.050	0.001	4.9	0.002	100	215	4.4	915.8	0.075

6. Water Quality Data and Summary for KVAD/R Dry Ash Placement Area Seepage Detection Groundwater Bores WGM1/D5 and 1/D6

a) Groundwater Bore WGM1/D5

WGM1/D5 Pr	e-Dry Asl	h Placem	ent Backg	ground S	Summary	1988-Apr	[.] il, 2003 (r	ng/L)										
Date	Ag	ALK	As	В	Ba	Be	Ca	Cd	CI	Co	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	0.001	18	0.004	1.29	0.166	0.006	12.4	0.002	20	0.061	701	0.017	0.019	0.41	6.9	0.0003	16	20.3
Maximum	0.001	90	0.013	2.00	1.700	0.006	23.0	0.005	90	0.075	1050	0.055	0.080	1.02	17.0	0.0007	23	34.0
Minimum	0.001	1	0.001	0.08	0.010	0.006	5.2	0.001	8	0.047	283	0.003	0.001	0.10	0.1	0.0002	7	8.0
90th Percentile	0.001	51	0.008	1.70	0.148	0.006	19.7	0.004	24	0.072	810	0.041	0.058	0.65	14.7	0.0006	19	26.0

Continued	W	GM1/D5	Pre-Dry	y Ash Pla	cement B	ackgrou	nd Sumn	nary 1988	-April, 20	003 (mg/L))	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	1.630		61	0.125	0.010	3.8	0.001	259	470	4.8	899.6	0.338
Maximum	3.970		127	0.140	0.050	5.4	0.002	380	1913	8.8	902.0	2.630
Minimum	0.520		7	0.110	0.002	2.8	0.001	92	48	2.3	895.4	0.032
90th Percentile	2.500		70	0.137	0.021	4.5	0.002	328	550	8.3	901.7	0.505

WGM1/D5 Post	t-Dry Ash	Placeme	nt Data I	Februar	y, 2012 t	o March 2	013													
Date	Ag	ALK	AI	As	В	Ba	Be	Ca	Cd	CI	Co	COND	Cr	Cu	F	Fe	Hg	к	Li	Mg
				0.00																
23-Feb-12	0.001	20	5.7	1	0.23	0.023		18	0.0006	5		380	0.002	0.002	0.3	0.26	0.00005	6		9
30-Mar-12	0.001	20	7.5	0.00 1	0.3	0.034		19	0.001	6		450	0.003	0.003	0.4	0.27	0.00005	7		15
20-Apr-12	0.001	20	16	0.00 1	2.3	0.025		35	0.002	39		1200	0.004	0.003	0.5	20	0.00005	28		52
9-May-12																				
27-Jun-12	0.001	20	7.5	0.00 1	0.71	0.025		22	0.00096	12		570	0.001	0.003	0.9	1	0.00005	13		23
26-Jul-12	0.001	20	14	0.00 1	1.5	0.026		30	0.001	29		860	0.002	0.007	0.6	0.47	0.00005	17		38
15-Aug-12																				
14-Sep-12																				
11-Oct-12																				
14-Nov-12																				
12-Dec-12																				
16-Jan-13																				
20-Feb-13	0.001	82	0.26	0.03 8	1.8	0.028		31	0.0005	19		720	0.001	0.003	0.9	0.02	0.00005	43		23
13-Mar-13	0.001	25	7.8	0.00 1	0.8	0.047		24	0.001	13		580	0.002	0.003	0.8	0.35	0.00005	12		21

Continued	WGM1/I	D5 Post-l	Dry As	sh Placen	nent Data	February	, 2012 to I	March 201	3			
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
23-Feb-12	2	0.01	10	0.13	0.001	3.7	0.002	140	290	2.6	901.59	0.35
30-Mar-12	2.8	0.01	20	0.23	0.002	3.7	0.002	180	300	2.6	901.59	0.56
20-Apr-12	6.8	0.01	86	0.45	0.003	3.8	0.002	560	860	6.2	897.99	0.81
9-May-12												
27-Jun-12	3.5	0.01	24	0.25	0.002	3.8	0.002	240	410	2.3	901.89	0.64
26-Jul-12	5.2	0.01	47	0.29	0.003	3.7	0.002	400	630	5.6	898.59	0.62
15-Aug-12												
14-Sep-12												
11-Oct-12												
14-Nov-12												
12-Dec-12												
16-Jan-13												
20-Feb-13	4.3	0.19	70	0.03	<0.001	6.4	0.002	240	510	7.7	896.49	0.06
13-Mar-13	3.2	0.01	25	0.22	0.002	3.7	0.002	220	430	3.1	901.09	0.56

WGM1/D5 Po	ost-Stage 2	Dry Ash	Placen	nent Febr	u ary, 20 °	12 to Ma	rch 2013	(mg/L)											
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Co	COND	Cr	Cu	F	Fe	Hg	к	Mg
Average	0.0010	30	8.4	0.0063	1.09	0.030		26	0.0010	18		680	0.0021	0.0034	0.63	3.20	0.000050	18	25.86
Maximum	0.0010	82	16.0	0.0380	2.30	0.047		35	0.0020	39		1200	0.0040	0.0070	0.90	20.00	0.000050	43	52.00
Minimum	0.0010	20	0.3	0.0010	0.23	0.023		18	0.0005	5		380	0.0010	0.0020	0.30	0.02	0.000050	6	9.00
50th Percentile	0.0010	20	7.5	0.0010	0.80	0.026		24	0.0010	13		580	0.0020	0.0030	0.60	0.35	0.000050	13	23.00

Continued	v	VGM1/D5	5 Post-S	itage 2 Dr	y Ash Pla	acement	February,	2012 to M	March 20	13 (mg/L))	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	3.97	0.036	40	0.229	0.002	4.1	<0.002	283	490	4.3	899.9	0.514
Maximum	6.80	0.190	86	0.450	0.003	6.4	<0.002	560	860	7.7	901.9	0.810
Minimum	2.00	0.010	10	0.030	0.001	3.7	<0.002	140	290	2.3	896.5	0.060
50th Percentile	3.50	0.010	25	0.230	0.002	3.7	<0.002	240	430	3.1	901.1	0.560

b) Groundwater Bore WGM1/D6

WGM1/D6 Pre-Dry	Ash Plac	ement	Backgro	ound Su	ummary 1	1988-April	, 2003 (mg	/L)									
	Ag	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	Cu	F	Fe	Hg	К	Mg
Average	0.001	27	0.003	0.78	0.184		22.3	0.002	53	94830	0.011	0.016	0.14	93.3	0.0004	7	25.4
Maximum	0.001	390	0.015	1.10	1.900		33.0	0.009	160	143000	0.032	0.260	0.65	174.2	0.0009	48	34.0
Minimum	0.001	0	0.001	0.27	0.021		14.0	0.001	23	60100	0.001	0.001	0.001	0.1	0.0001	4	17.0
90th Percentile	0.001	39	0.005	0.98	0.210		27.0	0.003	65	110000	0.020	0.021	0.28	123.0	0.0007	9	30.0

Continued	WG	M1/D6 P	re-Dry	Ash Plac	ement Bad	ckground	Summary	1988-Apri	il, 2003 (m	g/I)		
	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	4.005		45	0.117	0.007	4.5	0.016	340	603	10.8	896.2	0.107
Maximum	5.400		90	0.210	0.023	5.8	0.100	536	902	11.4	896.9	0.566
Minimum	1.390		26	0.023	0.001	1.4	0.001	190	320	10.1	895.6	0.004
90 th Percentile	4.810		55	0.191	0.013	5.5	0.043	381	736	11.2	896.6	0.232

WGM1/D6 Po	st-Dry As	h Placem	ent Data F	ebruary, 2	012 to Ma	rch 2013														
Date	Ag	ALK	AI	As	В	Ba	Ве	Ca	Cd	CI	Co	COND	Cr	Cu	F	Fe	Hg	к	Li	Mg
23-Feb-12	0.001	20	4.2	0.001	0.49	0.017		7.3	0.0003	23		950	0.002	0.002	0.400	1.3	0.00005	7		49
30-Mar-12	0.001	20	2.4	0.001	0.81	0.02		22	0.0002	52		1,300	0.001	0.001	0.300	67	0.00005	9		58
20-Apr-12	0.001	20	1.6	0.002	0.98	0.017		28	0.0002	47		1,200	0.002	0.002	0.300	110	0.00005	8		57
9-May-12	0.001	20	1.1	0.002	0.97	0.018		30	0.0002	45		1,200	0.002	0.007	0.200	86	0.00005	8		54
27-Jun-12	0.001	20	1.6	0.001	1.1	0.021		34	0.0002	48		1,500	0.002	0.002	0.200	140	0.00005	1 1		55
26-Jul-12	0.001	20	1.3	0.001	1.1	0.019		35	0.0002	50		1,500	0.001	0.004	0.100	110	0.00005	1 3		53
15-Aug-12	0.001	20	0.61	0.001	1.1	0.017		34	0.0002	51		1,300	0.001	0.002	0.100	150	0.00005	7		48
14-Sep-12	0.001	20	1.9	0.002	0.45	0.015		21	0.0006	40		1,000	0.001	0.003	0.300	16	0.00005	7		44
11-Oct-12	0.001	20	2.9	0.004	0.45	0.016		17	0.0017	37		1,100	0.001	0.006	0.300	59	0.00005	7		46
14-Nov-12	0.001	20	2	0.002	0.44	0.017		15	0.001	42		1,200	0.001	0.009	0.300	9.6	0.00005	7		44
12-Dec-12	0.001	25	1.8	0.002	0.48	0.017		17	0.0005	47		1,300	0.001	0.009	0.300	17	0.00005	7		45
16-Jan-13	0.001	25	1.8	0.002	0.67	0.018		25	0.0002	57		1,400	0.002	0.01	0.400	50	0.00005	8		53
20-Feb-13	0.001	25	4.7	0.002	0.55	0.018		27	0.001	81		1,500	0.002	0.008	0.200	24	0.00005	8		81
13-Mar-13	0.001	25	3.3	0.002	0.58	0.019		16	0.0002	42		1,300	0.002	0.016	0.700	24	0.00005	8		64

Continued		WGM1/	D6 Post-D	y Ash Pla	cement Da	ita Februa	ary, 2012 t	o March 2	013			
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
23-Feb-12	1.1	0.01	77	0.35	0.002	3.40	0.002	380	560	10.3	896.65	0.74
30-Mar-12	4	0.01	98	0.34	0.001	3.50	0.002	540	900	10.1	896.85	0.59
20-Apr-12	5.2	0.01	91	0.25	0.001	4.20	0.002	560	960	10.4	896.55	0.39
9-May-12	5.9	0.01	78	0.19	0.002	4.70	0.002	590	890		906.95	0.31
27-Jun-12	6.9	0.01	110	0.23	0.001	4.80	0.002	650	1100	15.0	891.95	0.35
26-Jul-12	7	0.01	140	0.16	0.001	3.10	0.002	660	1100	10.0	896.95	0.2
15-Aug-12	7.4	0.01	75	0.12	0.001	4.10	0.002	670	1200	10.8	896.15	0.12
14-Sep-12	4	0.01	74	0.3	0.002	3.90	0.002	460	660	11.0	895.95	1.1
11-Oct-12	3.2	0.01	75	0.43	0.005	3.10	0.002	420	710	10.8	896.15	1.6
14-Nov-12	2.9	0.01	71	0.4	0.003	3.00	0.002	400	590	10.7	896.25	1.4
12-Dec-12	3.6	0.01	77	0.39	0.002	3.10	0.002	430	650	10.8	896.15	1.3
16-Jan-13	5.1	0.01	82	0.37	<0.001	3.00	0.002	520	800	11.0	895.95	1.1
20-Feb-13	4.9	0.01	140	0.64	0.003	3.20	0.002	640	1100	10.7	896.25	2.1
13-Mar-13	3	0.01	110	0.53	0.002	3.30	0.002	520	880	10.4	896.55	1.3

WGM1/D6 Pos	st-Stage 2 D	ory Ash	Placement	t February	, 2012 to I	March 201	3 (mg/	_)												
	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Со	COND	Cr	Cu	F	Fe	Hg	К	Li	Mg
Average	<0.001	21	2.23	0.0018	0.73	0.018		23	0.0005	47		1268	0.0015	0.0058	0.29	61.7	0.00005	8		54
Maximum	<0.001	25	4.70	0.0040	1.10	0.021		35	0.0017	81		1500	0.0020	0.0160	0.70	150.0	0.00005	13		81
Minimum	<0.001	20	0.61	0.0010	0.44	0.015		7	0.0002	23		950	0.0010	0.0010	0.10	1.3	0.00005	7		44
50th Percentile	<0.001	20	1.85	0.0020	0.63	0.018		24	0.0002	47		1300	0.0015	0.0050	0.30	54.5	0.00005	8		53

Continued	WG	M1/D6 P	ost-Sta	ge 2 Dry	Ash Place	ement Feb	ruary, 201	2 to Marc	h 2013 (mg	μ/L)		
	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	WL1	WL AHD	Zn
Average	4.59	0.010	93	0.336	0.002	3.6	0.002	531	864	10.9	896.8	0.900
Maximum	7.40	0.010	140	0.640	0.005	4.8	0.002	670	1200	15.0	907.0	2.100
Minimum	1.10	0.010	71	0.120	0.001	3.0	0.002	380	560	10.0	892.0	0.120
50th Percentile	4.45	0.010	80	0.345	0.002	3.4	0.002	530	885	10.7	896.3	0.920

7. Water Quality Data and Summary for SSCAD

SSCAD Pre-Dry Ash	Placeme	ent Back	ground	Sumn	nary 199	6-April, 20	03 (mg/l	L)										
Date	Ag	ALK	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Mg
Average	0.001	18	0.016	4.7	0.128	0.009	56	0.012	18	121893	0.005		0.007	9.3	0.17	0.0002	53	11
Maximum	0.001	53	0.039	8.6	0.152	0.009	140	0.020	74	257800	0.018		0.035	14.0	0.45	0.0002	110	18
Minimum	0.001	5	0.003	2.7	0.110	0.008	33	0.006	8	86000	0.001		0.001	7.2	0.03	0.0001	35	7
90th Percentile	0.001	28.4	0.034	8.0	0.142	0.009	107	0.020	28	200360	0.013		0.016	11.4	0.29	0.0002	88	15

Continued	ssc	CAD Pre-D	ory Ash	Placemer	nt Backgro	ound Sum	mary 1996	-April, 20	03 (mg/L)	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	1.2	0.152	137	0.129	0.002	5.4	0.151	553	858	0.426
Maximum	1.7	0.190	380	0.150	0.005	6.5	0.379	1390	2170	0.650
Minimum	0.8	0.113	46	0.108	0.001	4.7	0.029	351	215	0.100
90th Percentile	1.7	0.182	287	0.146	0.005	6.0	0.298	1029	1604	0.580

SSCAD Post (data from A										, , , , ,	,,,,		<u>,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	,,,,,,,					, , , , ,	
Date	Ag	ALK	AI	As	в	Ва	Ве	Ca	Cd	CI	Со	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
16-Apr-10	<0.001	20		0.001	2.1	0.07	0.001	83	0.002	40		2247	0.001		0.01	2.5	0.03	0.00005	49		19
26-May-10	<0.001	20		0.001	2.3	0.071		88	0.0022	39		2130	0.001		0.005	2.3	0.05	0.00005	50		20
9-Jun-10	<0.001	20		0.001	2.2	0.069		85	0.0022	37		1978	0.001		0.004	2.2	0.01	0.00005	50		19
1-Jul-10	<0.001	20	1.5	0.001	2.3	0.071		81	0.0023	35		2055	0.001		0.008	2.2	0.14	0.00005	46		19
25-Aug-10	<0.001	20	4	0.001	2.1	0.071		78	0.0026	32		2109	0.001		0.01	2.4	0.57	0.00005	46		19
23-Sep-10	<0.001	20	3.6	0.001	1.9	0.067		81	0.0025	31		1996	0.001		0.012	2.7	1.4	0.00005	45		19
27-Oct-10	<0.001	20		0.002	2	0.075		78	0.0028	30		2026	0.001		0.01	2.3	0.39	0.00005	44		17
19-Nov-10	<0.001	20		0.002	2	0.083		79	0.0029	33		2023	0.001		0.011	2.5	0.15	0.00005	47		19
9-Dec-10	<0.001	20	1.5	0.0018	2.1	0.044		84	0.0014	32		2051	0.001		0.0057	1.7	0.07	0.00005	48		17
12-Jan-11	<0.001	20	0.32	0.002	1.9	0.029		90	0.0002	33		2007	0.001		0.001	1.3	1.3	0.00007	48		17
24-Feb-11	<0.001	20	0.14	0.001	1.7	0.027		76	0.0008	28		1745	0.001		<0.001	1.4	0.09	0.00005	41		14
24-Mar-11	<0.001	20	0.2	0.003	1.8	0.03		83	0.0005	27		1800	0.001		0.003	1.4	0.04	0.00005	42		15
8-Apr-11	<0.001	20	0.73	0.001	1.9	0.037		81	0.001	28		1700	0.001		0.006	1.6	0.01	0.00005	44		14
12-May-11	<0.001	20	2.8	0.001	2.1	0.052		82	0.003	26		1800	0.001		0.015	2.2	0.02	0.00005	45		16
10-Jun-11	<0.001	20	3	0.001	2.2	0.041		84	0.003	28		1900	0.001		0.014	2.4	0.01	0.00005	42		16
26-Jul-11	<0.001	20	2.7	0.001	2.1	0.031		91	0.002	26		1800	0.001		0.01	2.3	0.01	0.00005	45		15
30-Aug-11	<0.001	20	1.8	0.001	1.9	0.023		87	0.002	28		1800	0.001		0.007	1.9	0.01	0.00005	44		14
21-Sep-11	<0.001	20	1.6	0.001	2.1	0.024		96	0.002	29		1800	0.001		0.008	1.9	0.01	0.00005	48		15
12-Oct-11	<0.001	20	1.3	0.001	1.9	0.037		94	0.001	28		1900	0.001		0.004	1.7	0.01	0.00005	46		15
10-Nov-11	<0.001	20	7.2	0.002	2	0.098		75	0.0041	26		1800	0.010		0.046	2.3	0.09	0.00005	42		16
8-Dec-11	<0.001	20	4.5	0.001	1.9	0.083		70	0.0037	25		1700	0.001		0.031	4	0.04	0.00005	39		15
18-Jan-12	<0.001	2.6	20	0.001	1.8	0.079		70	0.003	27		1700	0.001		0.021	2.1	0.09	0.00005	40		15

Continued (data from Au			•		• •		ıary, 201	2		
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
16-Apr-10	0.89	0.03	370	0.03	0.001	4.5	0.003	1000	1600	0.08
26-May-10	0.92	0.01	380	0.03	0.001	5.5	0.002	1100	1600	0.08
9-Jun-10	0.93	0.02	370	0.03	0.001	5.9	0.003	1100	1600	0.09
1-Jul-10	0.94	0.02	350	0.04	0.001	4.9	0.003	1000	1600	0.1
25-Aug-10	1.1	0.01	330	0.04	0.001	4.6	0.003	950	1500	0.15
23-Sep-10	1.1	0.01	340	0.05	0.001	5.3	0.003	940	1500	0.14
27-Oct-10	1.1	0.01	320	0.05	0.001	5.2	0.004	930	1500	0.14
19-Nov-10	1.2	0.02	340	0.05	0.001	5	0.004	950	1400	0.15
9-Dec-10	1.9	0.01	350	0.05	0.001	4.2	0.004	940	1500	0.15
12-Jan-11	2.9	0.01	350	0.03	0.001	3.9	0.015	990	1400	0.04
24-Feb-11	1.7	0.25	280	0.02	0.001	5	0.006	850	1300	0.04
24-Mar-11	1.9	0.16	290	0.02	0.001	4.2	0.006	850	1200	0.04
8-Apr-11	1.8	0.04	280	0.02	0.001	5.1	0.005	840	1400	0.05
12-May-11	1.4	0.01	290	0.05	0.001	4.6	0.005	830	1400	0.15
10-Jun-11	1.4	0.01	290	0.05	0.001	4.5	0.005	870	1300	0.18
26-Jul-11	1.4	0.01	300	0.05	0.001	4.8	0.004	850	1400	0.22
30-Aug-11	1.3	0.01	290	0.04	0.001	4.9	0.004	850	1400	0.19
21-Sep-11	1.3	0.01	310	0.04	0.001	4.9	0.004	890	1300	0.19
12-Oct-11	1.2	0.03	290	0.03	0.001	5.2	0.006	870	1400	0.18
10-Nov-11	1.1	0.01	270	0.07	0.003	4.4	0.018	840	1300	0.27
8-Dec-11	1	0.01	260	0.06	0.002	4.8	0.014	780	1300	0.2
18-Jan-12	0.96	0.02	280	0.05	0.001	5	0.014	800	1300	0.16

SSCAD Post-Stage	e 2A Dry As	h Place	ment A	pril, 2010	to Jan	uary, 201	2 (mg/L)												
Date	Ag	ALK	AI	As	В	Ва	Be	Са	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Mg
Average	<0.001	19	3.3	0.0013	2.01	0.055		83	0.0021	30	1912	0.0014		0.0115	2.15	0.21	0.000051	45	17
Maximum	<0.001	20	20.0	0.0030	2.30	0.098		96	0.0041	40	2247	0.0100		0.0460	4.00	1.40	0.000070	50	20
Minimum	<0.001	3	0.1	0.0010	1.70	0.023		70	0.0002	25	1700	0.0010		0.0010	1.30	0.01	0.000050	39	14
50th Percentile	<0.001	20	1.8	0.0010	2.00	0.060		83	0.0022	29	1900	0.0010		0.0100	2.20	0.05	0.000050	45	16

Continued	SSC	AD Post-	Stage 2/	A Dry Asl	n Placeme	nt April, 2	010 to Jan	uary, 201	2 (mg/L)	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	1.34	0.033	315	0.041	0.001	4.8	0.006	910	1418	0.136
Maximum	2.90	0.250	380	0.070	0.003	5.9	0.018	1100	1600	0.270
Minimum	0.89	0.010	260	0.020	0.001	3.9	0.002	780	1200	0.040
50th Percentile	1.20	0.010	305	0.040	0.001	4.9	0.004	880	1400	0.150

SSCAD Post-	Dry Ash F	Placemer	nt Febr	uary, 2012	to March	n 2013															
Date	Ag	ALK	AI	As	В	Ва	Be	Са	Cd	CI	Co	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
22-Feb-12	0.001	20	2	0.002	1.8	0.075		66	0.0028	23		1600	0.001		0.013	2	0.010	0.00005	38		14
14-Mar-12	0.001	20	1.3	0.001	1.4	0.061		52	0.002	20		1300	0.001		0.008	1.5	0.02	0.00005	32		11
19-Apr-12	0.001	20	1.8	0.002	1.4	0.061		50	0.002	20		1200	0.001		0.009	0.4	0.31	0.00006	28		11
9-May-12	0.001	74	1.5	0.003	1.3	0.064		45	0.0019	18		1200	0.002		0.01	1.7	0.03	0.00005	24		10
27-Jun-12	0.001	20	2.2	0.003	1.4	0.076		46	0.003	19		1200	0.005		0.017	1.7	0.06	0.00005	28		10
26-Jul-12	0.001	20	5.4	0.004	1.5	0.079		51	0.003	19		1300	0.008		0.023	2.4	0.1	0.00005	30		11
15-Aug-12	0.001	20	7.6	0.002	1.7	0.078		50	0.004	20		1400	0.007		0.027	2.2	0.11	0.00005	33		12
13-Sep-12	0.001	20	11	0.002	2.1	0.08		61	0.006	20		1500	0.006		0.028	3.3	0.06	0.00005	40		15
11-Oct-12	0.001	20	8.2	0.003	2.1	0.075		60	0.006	20		1500	0.001		0.026	2.8	0.11	0.00005	37		14
14-Nov-12	0.001	20	6.5	0.004	2.3	0.061		64	0.006	20		1600	0.003		0.022	2.9	0.06	0.00005	41		15
12-Dec-12	0.001	25	5.7	0.002	2.1	0.073		60	0.006	20		1700	0.001		0.022	2.8	0.08	0.00005	43		14
16-Jan-13	0.001	25	3.6	0.002	2.4	0.076		65	0.006	22		1700	0.001		0.018	2.4	0.03	0.00005	45		16
20-Feb-13	0.001	25	2.4	0.001	2.1	0.07		70	0.005	21		1600	0.001		0.022	2.3	0.010	0.00005	40		17
13-Mar-13	0.001	25	4.2	<0.001	1.9	0.067		60	0.005	20		1600	0.001		0.039	2.6	0.07	0.00005	41		15

Continued	SSCAD	Post-Dr	y Ash	Placemen	t February	y, 2012 to	March 20)13		
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
22-Feb-12	0.91	0.02	280	0.05	<0.001	5	0.012	750	1100	0.16
14-Mar-12	0.74	0.02	220	0.04	<0.001	5.1	0.008	570	890	0.12
19-Apr-12	0.79	0.01	190	0.04	0.001	4.6	0.008	560	940	0.12
9-May-12	0.74	0.01	190	0.03	0.001	7.4	0.006	480	810	0.14
27-Jun-12	0.8	0.02	180	0.04	0.001	4.5	0.009	560	940	0.14
26-Jul-12	0.88	0.01	190	0.05	0.003	4.2	0.01	600	940	0.18
15-Aug-12	1.1	0.01	190	0.07	0.002	4.4	0.01	670	1100	0.26
13-Sep-12	1.4	0.01	220	0.1	0.002	4.5	0.009	720	1100	0.34
11-Oct-12	1.4	0.01	220	0.09	0.002	4.6	0.01	710	1100	0.31
14-Nov-12	1.5	0.02	240	0.1	0.002	4.7	0.012	750	1200	0.33
12-Dec-12	1.5	0.01	240	0.1	0.003	4.6	0.008	800	1200	0.45
16-Jan-13	1.6	0.01	240	0.1	0.002	4.8	0.008	780	1200	0.42
20-Feb-13	1.5	0.01	280	0.09	<0.001	4.8	0.006	760	1200	0.35
13-Mar-13	1.5	0.01	230	0.09	0.015	4.6	0.005	730	1200	0.36

SSCAD Post-Stage	2 Dry Ash	Placem	ent Fel	oruary, 20	12 to N	larch 201	13 (mg/L)												
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Mg
Average	0.001	25	4.5	0.002	1.82	0.071		57	0.0042	20	1457	0.0028		0.0203	2.21	0.08	0.00005	36	13
Maximum	0.001	74	11.0	0.004	2.40	0.080		70	0.0060	23	1700	0.0080		0.0390	3.30	0.31	0.00006	45	17
Minimum	0.001	20	1.3	0.001	1.30	0.061		45	0.0019	18	1200	0.0010		0.0080	0.40	0.01	0.00005	24	10
50th Percentile	0.001	20	3.9	0.002	1.85	0.074		60	0.0045	20	1500	0.0010		0.0220	2.35	0.06	0.00005	38	14

Continued	SSC	AD Post-	Stage 2	Dry Ash	Placement	February	, 2012 to M	March 201	3 (mg/L)	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	1.17	0.013	222	0.071	0.003	4.8	0.009	674	1066	0.263
Maximum	1.60	0.020	280	0.100	0.015	7.4	0.012	800	1200	0.450
Minimum	0.74	0.010	180	0.030	0.001	4.2	0.005	480	810	0.120
50th Percentile	1.25	0.010	220	0.080	0.002	4.6	0.009	715	1100	0.285

Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Со	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
23-Mar-10										14		210									
28-Apr-10										12		349									
25/07/2011										5		940									
23/08/2011										6		900									
21/09/2011										5		940									
21/10/2011										9		430									
28/11/2011										9		100									
16/12/2011										9		220									
30/01/2012										7		660									
28/02/2012										7		530									
30/03/2012										9		350									
24/04/2012										9		330									
30/05/2012										10		120									
25/06/2012										6		780									
26/07/2012										6		790									
22/08/2012										10		240									
19/09/2012										10		270									
25/10/2012										6		980									

8. Water Quality Data and Summary for Sawyers Swamp Creek Monitoring from SSCAD Spillway to near WGM4/D5

Date	Ag	ALK	AI	As	В	Ва	Ве	Ca	Cd	CI	Co	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
21/11/2012	<0.001	520	0.10	0.012	0.06	0.019		5.6	0.0002	5		1000	0.001		0.001	1.2	0.04	0.00005	11		0.015
28/12/2012	<0.001	510	0.34	0.019	0.07	0.022		4.4	0.0002	6		1000	0.001		0.002	1.3	0.03	0.00005	12		0.027
29/01/2013	<0.001	530	0.18	0.014	0.09	0.017		4.5	0.0002	5		1000	0.001		0.001	1.3	0.01	0.00005	11		0.001
22/02/2013	<0.001	520	0.19	0.014	0.10	0.018		5.2	0.0002	5		980	0.001		0.001	1.2	0.01	0.00005	11		0.003
26/03/2013	<0.001	490	0.14	0.013	0.07	0.021		4.4	0.0002	5		970	0.001		0.004	1.2	0.02	0.00005	11		0.015

Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
23-Mar-10						8.22		22	560	
28-Apr-10						9.19		22	600	
25/07/2011						8.7		21		
23/08/2011						8.7		20	260	
21/09/2011						8.6		20	89	
21/10/2011						8.7		19	140	+
28/11/2011						6.9		17		
16/12/2011						8.2		17	340	
30/01/2012						8.5		17	200	
28/02/2012						8.7		16	230	
30/03/2012						7.9		16	130	
24/04/2012						8.1		22	530	
30/05/2012						7		22	500	-
25/06/2012						8.4		19	140	
26/07/2012						8.3		19	190	-
22/08/2012						7.4		19	620	-
19/09/2012						7.5		21	660	
25/10/2012						8.5		21	630	
21/11/2012	0.015	0.02	240	0.01	0.001	8.1	0.002	22	700	0.0
28/12/2012	0.027	0.02	220	0.01	0.001	8.5	0.002	20	590	0.0
29/01/2013	0.001	0.02	220	0.01	0.002	8.3	0.002	21	600	0.0
22/02/2013	0.003	0.03	270	0.01	0.001	8.3	0.002	22	560	0.0
26/03/2013	0.015	0.02	250	0.01	0.001	8.3	0.002	22	600	0.0

Sawyers Swamp C	reek upstre	am @0	m whe	re SSCAI	D and S	pringval	e Mine Wa	ter from	August, 2	012 ent	ers SSC a	t spillway	'						
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Mg
Average	<0.001	0.19	514	0.014	0.08	0.019		4.8	0.0002	7	667	0.001		0.002	1.2	0.02	0.00005	11.2	2.0
Maximum	<0.001	0.34	530	0.019	0.10	0.022		5.6	0.0002	10	1000	0.001		0.004	1.3	0.04	0.00005	12.0	2.0
Minimum	<0.001	0.10	490	0.012	0.06	0.017		4.4	0.0002	5	120	0.001		0.001	1.2	0.01	0.00005	11.0	2.0
50th Percentile	<0.001	0.18	520	0.014	0.07	0.019		4.5	0.0002	6	785	0.001		0.001	1.2	0.02	0.00005	11.0	2.0

Continued August, 2012 enters		•	amp Cre	ek upstre	eam @0 m	where SS	SCAD and	Springva	le Mine Wa	ater from
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	0.012	0.02	240	0.010	0.001	8.1	0.002	19	433	0.030
Maximum	0.027	0.03	270	0.010	0.002	8.7	0.002	22	700	0.040
Minimum	0.001	0.02	220	0.010	0.001	7.0	0.002	16	130	0.020
50th Percentile	0.015	0.02	240	0.010	0.001	8.3	0.002	20	515	0.030

SSC upstream	m @600 m	n where \$	SSCAD	diversion	and Spr	ingvale Mii	ne Water	from A	ugust, 201	2 enters	s SSC a	at spillway	y								
Date	Ag	ALK	AI	As	В	Ba	Ве	Са	Cd	CI	Со	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Li	Mg
25/07/2011										6		960									
23/08/2011										7		910									
21/09/2011										6		950									
21/10/2011										12		610									
28/11/2011										11		140									
16/12/2011										10		240									
30/01/2012										9		660									

SSC upstrear	m @600 m	where \$	SSCAD	diversion	and Spr	ingvale Mi	ne Wate	r from A	ugust, 20 [.]	12 enter	s SSC a	at spillway	/								
Date	Ag	ALK	AI	As	В	Ba	Be	Ca	Cd	CI	Co	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Li	Mg
28/02/2012										8		530									
30/03/2012																					
24/04/2012										10		330									
30/05/2012										12		180									
25/06/2012										7		780									
26/07/2012										6		800									
22/08/2012										12		190									
19/09/2012										13		290									
25/10/2012										6		980									
21/11/2012										6		1000									
28/12/2012																					
29/01/2013										5		980									
22/02/2013										5		1100									
26/03/2013										8		520									

Continued August, 2012				n where S	SCAD d	iversion a	nd Sprir	ngvale N	line Wate	r from
Date	Mn	Mo	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
25/07/2011						8.6		23	570	
23/08/2011						8.9		25	600	
21/09/2011						8.8		23		
21/10/2011						8.6		31	370	
28/11/2011						7.4		23	110	
16/12/2011						8.3		23	150	
30/01/2012						8.7		20		
28/02/2012						8.8		18	330	
30/03/2012										
24/04/2012						8.3		18	200	
30/05/2012						7.7		21	90	
25/06/2012						8.7		23	530	
26/07/2012						8.6		23	500	
22/08/2012						7.7		24	100	
19/09/2012						8		26	200	
25/10/2012						8.8		20	520	
21/11/2012						8.7		22	630	
28/12/2012										
29/01/2013						8.7		20	640	
22/02/2013						8.6		19		
26/03/2013						8.6		21		

Sawyers Swamp Cre	ek upstre	eam @6	00 m w	here SSC	AD and	Spring	ale Mine	Nater fro	om August	t, 2012 e	enters SSC	at spills	/ay						
Date	Ag	ALK	AI	As	В	Ва	Be	Са	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Mg
Average										8	640								
Maximum										13	1100								
Minimum										5	180								
50th Percentile										8	655								

Continued from August, 2012		•		reek up	stream @	600 m whe	re SSCAD	and Spri	ngvale Mir	ne Water
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average						8.4		21	374	
Maximum						8.8		26	640	
Minimum						7.7		18	90	
50th Percentile						8.6		21	415	

Date	Ag	ALK	AI	As	В	Ва	Be	Са	Cd	CI	Со	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Li	Mg
1/02/2010	<0.001	90	0.2	<0.002	2.9	0.024	0.001	150	0.0004	49		2013	<0.001		<0.001	0.6	<0.01	<0.00005	34		67
24/02/2010	<0.001	80	0.1	<0.001	2.8	0.022	0.001	130	0.00018	51		2139	<0.001		0.0029	1.6	<0.01	<0.00005	35		61
18/03/2010	<0.001	80	<0.1	<0.001	3	0.021	0.001	140	0.0002	46		2016	<0.001		0.0032	1.5	<0.01	<0.00005	35		64
15/04/2010	<0.001	110	<0.1	<0.001	2.4	0.021	<0.001	120	0.0002	48		2000	<0.001		0.004	1.2	0.01	<0.00005	33		57
26/05/2010	<0.001	60	0.5	<0.001	2	0.021	<0.001	99	<0.0002	40		1555	0.001		0.002	1.2	0.02	<0.00005	28		47
9/06/2010	<0.001	80	0.09	<0.001	2.7	0.021		140	0.0002	48		1831	<0.001		0.002	1.3	<0.01	<0.00005	35		65
1/07/2010	<0.001	90	0.36	<0.001	2	0.03		110	<0.0002	50		1681	<0.001		0.004	1.2	<0.01	<0.00005	26		52
25/08/2010	<0.001	80	1.1	<0.001	0.75	0.03		52	<0.0002	46		860	0.001		0.003	0.8	0.01	<0.00005	12		25
23/09/2010	<0.001	240	1.1	0.001	0.58	0.033		41	<0.0002	45		979	<0.001		0.004	1.2	0.01	<0.00005	12		21
27/10/2010	<0.001	80	1.1	<0.001	0.79	0.035		48	<0.0002	38		818	<0.001		0.002	0.7	0.01	<0.00005	12		24
19/11/2010	<0.001	110	1.7	0.001	1	0.056		62	<0.0002	48		1004	0.002		0.005	0.9	0.01	<0.00005	17		31
9/12/2010	<0.001	50	0.88	0.0015	1.7	0.058		78	0.001	44		1488	<0.001		0.0042	1.1	<0.01	<0.00005	29		33
12/01/2011	<0.001	90	0.09	<0.001	2.1	0.029		120	<0.0002	58		1840	<0.001		0.001	1.3	0.01	<0.00005	32		58
24/02/2011	<0.001	90	0.06	<0.001	2.5	0.023		130	0.0002	51		1900	<0.001		<0.001	1.4	<0.01	<0.00005	34		60
24/03/2011	<0.001	86	0.05	<0.001	2.5	0.023		130	<0.0002	51		1900	<0.001		0.002	1.3	<0.01	<0.00005	34		61
8/04/2011	<0.001	85	0.06	<0.001	2.6	0.021		120	0.0002	50		1900	<0.001		0.002	1.3	0.02	<0.00005	37		57
12/05/2011	<0.001	81	0.05	<0.001	2.5	0.022		120	0.0002	48		1900	<0.001		0.002	1.3	0.02	<0.00005	33		60
10/06/2011	<0.001	82	0.08	<0.001	2.6	0.022		130	<0.0002	48		2000	<0.001		0.003	1.3	<0.01	<0.00005	33		59
26/07/2011	<0.001	82	0.04	<0.001	2.6	0.02		120	<0.0002	45		1800	0.001		0.002	1.3	<0.01	<0.00005	35		57
30/08/2011	<0.001	85	0.06	<0.001	2.3	0.021		120	<0.0002	46		1800	<0.001		0.002	1.3	<0.01	<0.00005	33		53
21/09/2011	<0.001	84	0.05	<0.001	2.4	0.021		120	<0.0002	49		1900	0.002		0.004	1.4	0.02	<0.00005	34		56
26/10/2011	<0.001	89	0.05	<0.001	2.1	0.022		110	<0.0002	47		1900	0.001		<0.001	1.3	0.03	<0.00005	33		55

SSCAD Seep	age from V	V-notch	(water o	collected a	ind recyc	ling back i	nto dam)													
Date	Ag	ALK	AI	As	в	Ва	Ве	Са	Cd	CI	Со	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
15/11/2011	<0.001	87	0.1	<0.001	2.4	0.18		120	<0.0002	53		1900	<0.001		0.003	1.4	0.03	<0.00005	33		56
18/01/2012	<0.001	89	0.12	<0.001	2.4	0.024		120	<0.0002	52		1900	<0.001		0.003	1.3	0.03	<0.00005	34		54
23/02/2012	<0.001	90	0.37	<0.001	1.9	0.027		92	<0.0002	43		1600	<0.001		0.002	0.9	0.03	<0.00005	28		44
14/03/2012	<0.001	100	0.09	<0.001	2	0.03		97	<0.0002	53		1700	<0.001		0.002	0.9	0.01	<0.00005	30		47
20/04/2012	<0.001	88	0.31	<0.001	2.3	0.024		100	0.0002	49		1700	<0.001		0.004	1.7	0.02	0.00006	30		48
23/05/2012	<0.001	85	0.19	<0.001	2.4	0.023		110	<0.0002	47		1700	<0.001		0.003	1.3	0.01	<0.00005	28		53
21/06/2012	<0.001	89	0.11	<0.001	2	0.021		88	<0.0002	45		1500	<0.001		0.002	1.3	<0.01	<0.00005	26		43
26/07/2012	<0.001	68	1.1	<0.001	1.4	0.026		62	<0.0002	38		1200	<0.001		0.002	0.8	0.03	<0.00005	19		31
15/08/2012	<0.001	86	0.17	<0.001	2.1	0.023		93	<0.0002	48		1600	<0.001		0.002	1.5	0.02	<0.00005	28		44
14/09/2012	<0.001	86	0.19	<0.001	2.3	0.022		98	<0.0002	46		1600	<0.001		0.003	1.2	<0.01	<0.00005	31		46
11/10/2012	<0.001	82	0.31	<0.001	2.3	0.024		94	0.0002	42		1600	<0.001		0.004	1.2	0.22	<0.00005	30		44
14/11/2012	<0.001	82	0.07	<0.001	2.5	0.022		98	<0.0002	41		1700	<0.001		0.002	1.3	<0.01	<0.00005	31		45
12/12/2012	<0.001	79	0.36	<0.001	2.4	0.044		96	0.0003	44		1700	<0.001		0.004	1.5	<0.01	<0.00005	38		45
16/01/2013	<0.001	80	0.69	<0.001	2.6	0.039		110	0.0006	42		1700	0.002		0.008	1.8	0.04	<0.00005	37		47
20/02/2013	<0.001	77	0.17	<0.001	2.4	0.021		110	<0.0002	37		1700	<0.001		0.004	0.2	<0.01	<0.00005	33		50
13/03/2013	<0.001	84	0.08	<0.001	2.2	0.027		110	0.0002	40		1800	<0.001		0.005	1.4	<0.01	<0.00005	36		51

curecon Leading. Vibrant. Global.

Continued	SSCAD) Seepaç	ge from	V-notch	water col	lected and	recycling	g back ir	nto dam)	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
1/02/2010	0.03	<0.01	250	0.01	<0.001	7.4	0.002	1000	1600	0.06
24/02/2010	0.05	<0.01	230	<0.01	<0.001	7.4	<0.002	980	1500	0.03
18/03/2010	0.06	<0.01	240	0.01	<0.001	7.5	<0.002	900	1600	0.04
15/04/2010	0.02	<0.01	250	<0.01	<0.001	7.8	0.002	890	1500	0.04
26/05/2010	0.05	<0.01	190	<0.01	<0.001		<0.002	720	1100	0.03
9/06/2010	0.05	<0.01	240	0.01	<0.001	7.4	0.002	930	1500	0.04
1/07/2010	0.22	<0.01	190	<0.01	<0.001	8	<0.002	700	1200	0.03
25/08/2010	0.15	<0.01	96	<0.01	0.001	7.7	<0.002	250	530	0.04
23/09/2010	<0.01	0.01	150	<0.01	0.001	8.2	0.002	190	610	0.01
27/10/2010	0.24	<0.01	83	<0.01	0.001	7.7	<0.002	250	560	0.02
19/11/2010	0.11	<0.01	120	<0.01	0.002	7.7	<0.002	330	700	0.02
9/12/2010	0.41	0.01	210	0.02	<0.001	7.4	0.002	640	1100	0.07
12/01/2011	<0.01	<0.01	240	<0.01	<0.001	7.5	<0.002	850	1500	0.03
24/02/2011	0.07	<0.01	250	0.01	<0.001	7.5	<0.002	910	1500	0.03
24/03/2011	0.046	<0.01	250	<0.01	<0.001	7.4	<0.002	890	1400	0.03
8/04/2011	0.046	<0.01	250	<0.01	<0.001	7.5	<0.002	900	1500	0.03
12/05/2011	0.049	<0.01	240	<0.01	<0.001	7.4	<0.002	880	1500	0.03
10/06/2011	0.055	<0.01	260	0.01	<0.001	7.4	<0.002	890	1400	0.04
26/07/2011	0.05	<0.01	240	<0.01	<0.001	7.3	0.002	880	1400	0.04
30/08/2011	0.047	<0.01	240	<0.01	<0.001	7.5	0.002	820	1300	0.04
21/09/2011	0.039	<0.01	250	<0.01	<0.001	7.7	0.002	850	1500	0.03
26/10/2011	0.05	<0.01	230	<0.01	<0.001	7.4	0.002	820	1400	0.03
15/11/2011	0.019	<0.01	230	<0.01	<0.001	7.7	0.002	830	1500	0.51
18/01/2012	0.076	<0.01	250	<0.01	<0.001	7.6	<0.002	820	1400	0.04
23/02/2012	0.001	<0.01	210	<0.01	<0.001	7.6	<0.002	630	1100	0.03
14/03/2012	0.032	<0.01	220	<0.01	<0.001	7.7	0.002	700	1100	0.03
20/04/2012	0.019	<0.01	220	<0.01	<0.001	7.4	0.002	750	1300	0.03
23/05/2012	0.026	<0.01	210	<0.01	<0.001	7.2	0.002	740	1300	0.06
21/06/2012	0.03	<0.01	190	<0.01	<0.001	7.5	0.002	660	1200	0.03
26/07/2012	<0.001	<0.01	140	<0.01	<0.001	7	0.002	480	860	0.03
15/08/2012	0.014	<0.01	210	<0.01	<0.001	7.1	0.002	720	1300	0.07
14/09/2012	0.007	<0.01	210	<0.01	<0.001	7.4	<0.002	730	1200	0.04

Continued	SSCAD	Seepag	ge from	n V-notch (water col	lected and	recycling	y back ir	nto dam)	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
11/10/2012	0.087	<0.01	210	<0.01	<0.001	7.1	0.002	710	1200	0.03
14/11/2012	0.027	<0.01	220	<0.01	<0.001	6.9	0.002	730	870	0.04
12/12/2012	0.017	<0.01	210	<0.01	<0.001	7.2	0.002	820	1300	0.05
16/01/2013	0.031	<0.01	220	0.02	0.001	6.8	0.002	780	1300	0.08
20/02/2013	0.024	<0.01	250	<0.01	<0.001	7.1	<0.002	770	1400	0.03
13/03/2013	0.007	<0.01	230	0.01	<0.001	7	0.002	750	1300	0.04

SSCAD Seepage from	n V-notch	(water	colle	cted and r	ecyclin	ng back ir	nto dam)												
Date	Ag	ALK	AI	As	В	Ва	Ве	Ca	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Mg
Average	<0.001	84	0.3	<0.001	2.20	0.027		97	0.0003	44	1629	0.0020	0.003	1.214	0.05	<0.00005	30	46	0.003
Maximum	<0.001	100	1.1	<0.001	2.60	0.044		110	0.0006	53	1800	0.0020	0.008	1.800	0.22	<0.00005	38	53	0.008
Minimum	<0.001	68	0.1	<0.001	1.40	0.021		62	0.0002	37	1200	0.0020	0.002	0.200	0.01	0.00006	19	31	0.002
50th Percentile	<0.001	85	0.2	<0.001	2.30	0.024		98	0.0002	44	1700	0.0020	0.003	1.300	0.03	<0.00005	30	46	0.003

SSCAD Seepage fro	m V-note	ch (water	collecte	d and red	ycling ba	ck into da	m)			
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	0.02	<0.01	211	<0.01	<0.001	7.2	0.002	712	1195	0.04
Maximum	0.09	<0.01	250	0.020	<0.001	7.7	0.002	820	1400	0.08
Minimum	0.00	<0.01	140	0.010	0.001	6.8	0.002	480	860	0.03
50th Percentile	0.02	<0.01	210	<0.01	<0.001	7.2	0.002	730	1250	0.04

Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Co	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
1-Feb-10	<0.001	120	0.3	0.002	0.43	0.043	<0.001	20	<0.0002	15		554	<0.001		0.001	0.6	0.32	<0.00005	8		9.4
24-Feb-10	<0.001	150	<0.1	0.001	0.82	0.085	<0.001	44	<0.0001	22		895	<0.001		0.0012	0.6	0.02	<0.00005	12		21
17-Mar-10	<0.001	160	<0.1	0.001	1.1	0.14	0.001	66	<0.0002	29		1188	<0.001		0.002	0.6	<0.01	<0.00005	16		33
15-Apr-10	<0.001	460	0.8	0.003	0.19	0.027	<0.001	12	<0.0002	9		1024	<0.001		0.002	1	0.33	<0.00005	11		6
26-May-10	<0.001	130	5	0.004	0.63	0.089	0.001	34	<0.0002	32		822	0.005		0.009	0.5	0.02	<0.00005	13		19
9-Jun-10	<0.001	120	0.03	0.001	0.98	0.07		52	<0.0002	33		1031	<0.001		0.001	0.6	0.02	<0.00005	15		26
1-Jul-10	<0.001	120	0.04	0.001	0.85	0.08		48	<0.0002	32		1007	<0.001		0.003	0.4	<0.01	<0.00005	14		25
25-Aug-10	<0.001	180	0.51	0.001	0.2	0.032		14	<0.0002	20		560	<0.001		0.001	0.5	0.62	<0.00005	6		7.7
23-Sep-10	<0.001	260	0.4	0.003	1.1	0.024		8.8	<0.0002	10		656	<0.001		0.002	0.6	0.95	<0.00005	7		4.5
28-Oct-10	<0.001	220	1	0.002	0.07	0.026		7.2	<0.0002	8		519	<0.001		0.002	0.5	0.46	<0.00005	5		4.3
23-Nov-10																					
9-Dec-10																					
																					
13-Jan-11																					
24-Feb-11																					
24-Mar-11																					
8-Apr-11																					
12-May-11																					
10-Jun-11																					
25/07/2011										8		980									
23/08/2011										9		930									──

Date	Ag	ALK	AI	As	в	Ва	Be	Ca	Cd	CI	Co	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
	~9			73	5	Bu		ou	- Ou	-			01	0.11	ou	•	10	ng	, n		mg
21/09/2011										8		1000									
21/10/2011										19		870									
28/11/2011										13		410									
16/12/2011										12		500									
30/01/2012																					
28/02/2012										10		520									
30/03/2012										11		350									
24/04/2012										12		430									
30/05/2012										16		410									
29/06/2012	<0.001	370	0.23	0.004	0.15	0.03		9.0	<0.0002	10		804	<0.001		<0.001	0.84	0.05	<0.00005	8.5		4.9
26/07/2012	<0.001	133	1.27	0.002	0.19	0.03		10.9	<0.0002	17		463	<0.001		0.002	0.35	0.14	<0.00005	5.8		6.2
22/08/2012	<0.001	86	0.70	0.005	0.29	0.04		14.0	<0.0002	16		438	<0.001		0.022	0.29	0.07	<0.00005	5.9		8.1
19/09/2012	<0.001	119	1.15	0.009	0.41	0.07		20.4	<0.0002	18		567	<0.001		0.004	0.45	0.09	<0.00005	8.1		11.4
25/10/2012	<0.001	444	0.41	0.007	0.18	0.03		10.5	<0.0002	10		950	<0.001		0.002	0.86	1.32	<0.00005	10.0		5.9
21/11/2012	<0.001	492	0.11	0.008	0.21	0.03		10.9	<0.0002	8		1043	<0.001		0.001	1.17	0.04	<0.00005	11.6		5.9
12/12/2012	<0.001	502	0.26	0.016	0.10	0.03		6.9	<0.0002	7		1037	<0.001		0.001	1.28	0.02	<0.00005	13.2		3.3
29/01/2013	<0.001	516	0.13	0.013	0.11	0.02		5.9	<0.0002	6		979	<0.001		0.001	1.23	0.05	<0.00005	11.3		2.7
22/02/2013	<0.001	519	0.09	0.014	0.11	0.02		7.4	<0.0002	6		1017	<0.001		<0.001	1.25	0.02	<0.00005	11.4		3.1
26/03/2013	<0.001	483	0.09	0.012	0.10	0.02		6.2	< 0.0002	6		981	<0.001		0.025	0.96	0.03	<0.00005	11.3		3.2

Continued		D Seepag	ge from	V-notch	(water col	lected and	l recycling	y back ii	nto dam)	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
1-Feb-10	0.08	<0.01	84	<0.01	<0.001	7.9	<0.002	130	340	<0.01
24-Feb-10	1.1	<0.01	110	<0.01	<0.001	7.6	<0.002	250	550	0.01
17-Mar-10	1.6	<0.01	150	<0.01	<0.001	7.5	<0.002	390	860	0.02
15-Apr-10	<0.01	0.01	230	<0.01	<0.001	8.5	<0.002	71	590	0.04
26-May-10	0.11	<0.01	120	<0.01	0.011	7.7	<0.002	230	480	0.06
9-Jun-10	0.55	<0.01	130	<0.01	<0.001	7.7	<0.002	380	720	0.01
1-Jul-10	0.91	<0.01	120	<0.01	<0.001	8.2	<0.002	320	600	0.02
25-Aug-10	0.2	<0.01	95	<0.01	<0.001	8.1	<0.002	79	310	0.02
23-Sep-10	0.04	<0.01	140	<0.01	0.001	8.3	<0.002	68	390	0.01
28-Oct-10	0.02	0.01	110	<0.01	0.001	8.1	<0.002	38	360	0.02
23-Nov-10										
9-Dec-10										
13-Jan-11										
24-Feb-11										
24-Mar-11										
8-Apr-11										
12-May-11										
10-Jun-11										
25/07/2011						8.4		58	630	
23/08/2011						8.6		57	610	
21/09/2011						8.4		59		
21/10/2011						7.8		200	560	
28/11/2011						7.6		79	280	
16/12/2011						8.0		120	330	
30/01/2012										
28/02/2012						8.1		39	340	
30/03/2012						8.0		36	240	
24/04/2012						7.9		56	260	
30/05/2012						7.6		99	220	
29/06/2012	0.050	0.01	176	0.002	<0.001	8.5	<0.002	57	536	0.029
26/07/2012	0.001	0.01	81	0.002	0.002	7.7	<0.002	72	310	0.014

Continued	SSCAE) Seepa	ge from	V-notch	(water col	lected and	l recycling	y back ir	nto dam)	
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
22/08/2012	0.005	0.01	69	0.003	0.002	7.3	<0.002	106	273	0.06
19/09/2012	0.052	0.01	89	0.006	0.003	7.6	<0.002	136	350	0.061
25/10/2012	0.145	0.02	212	0.003	0.001	8.3	<0.002	60	564	0.016
21/11/2012	0.015	0.02	241	0.003	<0.001	8.0	<0.002	62	672	0.028
12/12/2012	0.037	0.03	233	0.003	0.001	8.7	<0.002	34	643	0.071
29/01/2013	0.001	0.02	227	0.002	0.002	8.5	<0.002	31	688	0.029
22/02/2013	0.001	0.02	280	0.003	<0.001	8.5	<0.002	35	600	0.016
26/03/2013	0.001	0.02	245	0.005	0.002	8.4	<0.002	34	610	0.029

	r	1		r						1	1			1	1			 1	
Date	Ag	ALK	AI	As	В	Ва	Be	Са	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	ĸ	Mg
Average	<0.001	366	0.44	0.009	0.18	0.03		10.2	<0.0002	11	714	<0.001		0.007	0.87	0.18	<0.00005	9.7	5.
Maximum	<0.001	519	1.27	0.016	0.41	0.07		20.4	<0.0002	18	1043	<0.001		0.025	1.28	1.32	<0.00005	13.2	11
Minimum	<0.001	86	0.09	0.002	0.10	0.02		5.9	<0.0002	6	350	<0.001		0.001	0.29	0.02	<0.00005	5.8	2
50th Percentile	<0.001	464	0.24	0.009	0.17	0.03		9.8	<0.0002	10	686	<0.001		0.002	0.91	0.05	<0.00005	10.6	5

Sawyer	rs Creek @850m – upstream seepage from KVAD wall and Below v-notch Seepage Point. EANSW Site 93
from Ju	une. 2012

nom ounc, 2012										
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	0.03	0.02	185	0.003	0.002	8.1	<0.002	61	450	0.035
Maximum	0.15	0.03	280	0.006	0.003	8.7	<0.002	136	688	0.071
Minimum	0.00	0.01	69	0.002	0.001	7.3	<0.002	31	220	0.014
50th Percentile	0.01	0.02	220	0.003	0.002	8.1	<0.002	56	443	0.029

	-		1	GW Bore	-	1										_		· · ·			
Date	Ag	ALK	AI	As	В	Ba	Be	Ca	Cd	CI	Co	COND	Cr	CrIV	Cu	F	Fe	Hg	K	Li	Mg
1-Feb-10	<0.001	90	1.9	<0.002	1.7	0.041	0.002	37	<0.0002	17		897	<0.001		0.001	1.2	0.02	<0.00005	23		26
24-Feb-10	<0.001	140	<0.1	<0.001	0.85	0.083	<0.001	39	<0.0001	21		846	<0.001		0.0013	0.7	0.06	<0.00005	13		20
17-Mar-10	<0.001	170	<0.1	<0.001	0.96	0.13	<0.001	55	<0.0002	26		1113	<0.001		0.002	0.7	0.02	<0.00005	14		30
15-Apr-10	<0.001	460	0.9	0.003	0.23	0.026	<0.001	12	<0.0002	10		1029	<0.001		0.002	0.8	0.25	<0.00005	11		6.4
26-May-10	<0.001	130	3.7	0.003	0.71	0.081	0.001	36	<0.0002	33		870	0.003		0.006	0.5	0.01	<0.00005	14		20
9-Jun-10	<0.001	120	0.01	<0.001	0.93	0.073		49	<0.0002	33		1007	<0.001		0.001	0.5	0.02	<0.00005	14		25
1-Jul-10	<0.001	120	0.02	<0.001	0.88	0.086		47	<0.0002	33		1031	<0.001		0.002	0.5	0.03	<0.00005	13		25
25-Aug-10	<0.001	180	0.85	0.001	0.21	0.034		14	<0.0002	19		589	<0.001		0.001	0.6	0.23	<0.00005	7		8.2
23-Sep-10	<0.001	270	0.36	0.003	1.3	0.023		9.1	<0.0002	10		667	<0.001		0.002	0.7	0.96	<0.00005	7		4.7
27-Oct-10	<0.001	120	0.28	0.001	0.1	0.023		8	<0.0002	10		360	<0.001		0.001	0.4	0.63	<0.00005	4		4.8
18-Nov-10	<0.001	90	0.42	0.001	0.09	0.021		6.1	<0.0002	9		287	<0.001		0.002	0.3	0.57	<0.00005	3		3.8
9-Dec-10	<0.001	30	0.53	<0.001	0.14	0.051		6.5	<0.0002	13		220	<0.001		0.0015	0.2	0.09	<0.00005	4		4.5
13-Jan-11	<0.001	80	0.27	<0.001	0.22	0.042		12	<0.0002	14		347	<0.001		<0.001	0.4	0.43	<0.00005	4		7
24-Feb-11	<0.001	110	0.03	<0.001	0.39	0.058		21	<0.0002	20		549	<0.001		<0.001	0.5	0.14	<0.00005	7		13
24-Mar-11	<0.001	120	0.07	<0.001	0.42	0.053		22	<0.0002	21		560	<0.001		0.001	0.4	0.17	<0.00005	8		13
8-Apr-11	<0.001	170	0.03	<0.001	0.47	0.05		24	<0.0002	20		720	<0.001		0.002	0.5	0.06	<0.00005	9		14
12-May-11	<0.001	330	0.1	0.002	0.3	0.035		16	<0.0002	20		850	<0.001		0.001	0.8	0.19	<0.00005	11		10
10-Jun-11	<0.001	430	0.36	0.005	0.19	0.022		11	<0.0002	9		940	<0.001		<0.001	1	0.05	<0.00005	9		5
21/09/2011										8		1000									
21/10/2011										19		880				<u> </u>					
28/11/2011										13		410									<u> </u>

Sawyers Swa	amp Creek	@ 1250	m near	GW Bore	D5, EAN	SW Site 83															
Date	Ag	ALK	AI	As	В	Ba	Be	Ca	Cd	CI	Co	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
16/12/2011										13		520									
30/01/2012										13		710									
28/02/2012	<0.001	180	0.47	0.002	0.18	0.025		9.4	<0.0002	10		560	<0.001		0.002	0.4	0.47	<0.00005	6		5
14/03/2012	<0.001	84	0.19	<0.001	0.13	0.034		5.7	<0.0002	11		280	<0.001		<0.001	0.2	0.29	<0.00005	4		4
20/04/2012	<0.001	120	0.19	<0.001	0.21	0.032		9.4	<0.0002	12		400	<0.001		0.001	0.3	0.44	0.00005	5		6
23/05/2012	<0.001	120	0.2	<0.001	0.36	0.037		16	<0.0001	15		530	<0.001		0.001	0.6	0.1	<0.00005	7		9
21/06/2012	<0.001	63	0.25	<0.001	0.31	0.034		15	<0.0002	17		410	<0.001		<0.001	0.3	0.08	<0.00005	6		8
26/07/2012	<0.001	180	0.66	0.002	0.21	0.027		11	<0.0002	16		550	<0.001		0.001	0.5	0.33	<0.00005	7		6
15/08/2012	<0.001	93	0.21	<0.001	0.36	0.032		15	<0.0002	16		490	<0.001		<0.001	0.5	0.09	<0.00005	7		8
14/09/2012	<0.001	110	0.27	<0.001	0.5	0.041		21	<0.0002	17		590	<0.001		0.001	0.6	0.04	<0.00005	10		12
11/10/2012	<0.001	420	0.45	0.004	0.21	0.023		10	<0.0002	9		860	<0.001		0.002	1	1.7	<0.00005	11		6
14/11/2012	<0.001	500	0.13	0.007	0.18	0.022		9.6	<0.0002	7		1000	<0.001		0.0012	1.2	0.11	<0.00005	12		5
12/12/2012	<0.001	510	0.29	0.015	0.09	0.024		5.9	<0.0002	6		1000	<0.001		0.002	1.4	0.01	<0.00005	13		3
16/01/2013	<0.001	520	0.12	0.013	0.1	0.018		5.4	<0.0002	5		1000	<0.001		0.001	1.3	0.08	<0.00005	11		2
20/02/2013	<0.001	520	0.1	0.012	0.1	0.015		6	<0.0002	5		990	<0.001		<0.001	1.3	0.08	<0.00005	11		3
13/03/2013	<0.001	470	0.1	0.012	0.09	0.019		5	<0.0002	5		970	<0.001		<0.001	1.4	0.07	<0.00005	12		3

Continued	Sawye	rs Swam	np Cree	ek @ 1250	m near G	W Bore D	5, EANSW	Site 83		_
Date	Mn	Мо	Na	Ni	Pb	pН	Se	SO4	TDS	Zn
1-Feb-10	3.2	<0.01	110	0.2	0.001	7.3	<0.002	350	600	0.21
24-Feb-10	1.1	<0.01	110	<0.01	<0.001	7.7	<0.002	230	520	0.02
17-Mar-10	1.6	<0.01	130	<0.01	<0.001	7.8	<0.002	330	790	0.02
15-Apr-10	<0.01	0.02	220	<0.01	<0.001	8.5	<0.002	76	580	0.04
26-May-10	0.14	<0.01	130	<0.01	0.008	7.9	<0.002	250	560	0.04
9-Jun-10	0.69	<0.01	120	<0.01	<0.001	7.8	<0.002	360	700	0.01
1-Jul-10	1.1	<0.01	120	<0.01	<0.001	8.2	<0.002	330	640	0.02
25-Aug-10	0.15	<0.01	110	<0.01	<0.001	8.2	<0.002	79	330	0.02
23-Sep-10	0.03	<0.01	150	<0.01	0.001	8.4	<0.002	68	400	0.02
27-Oct-10	0.04	<0.01	66	<0.01	<0.001	8	<0.002	46	230	0.01
18-Nov-10	0.05	<0.01	54	<0.01	<0.001	7.9	<0.002	35	210	0.02
9-Dec-10	0.007	<0.01	31	<0.01	<0.001	7.3	<0.002	46	170	0.02
13-Jan-11	0.04	<0.01	56	<0.01	<0.001	7.8	<0.002	68	260	0.02
24-Feb-11	0.53	<0.01	77	<0.01	<0.001	7.5	<0.002	130	350	0.01
24-Mar-11	0.42	<0.01	81	<0.01	<0.001	7.7	<0.002	130	340	0.01
8-Apr-11	0.5	<0.01	120	<0.01	<0.001	8.1	<0.002	160	500	0.02
12-May-11	0.22	0.01	170	<0.01	<0.001	8.3	<0.002	100	560	0.01
10-Jun-11	0.041	0.02	220	<0.01	0.001	8.5	<0.002	61	570	0.02
21/09/2011						8.5		59		
21/10/2011						8.1		210	560	
28/11/2011						7.9		74	270	
16/12/2011						8.2		120	320	
30/01/2012						8.3		63		
28/02/2012	0.057	0.01	100	<0.01	<0.001	8.3	<0.002	50	360	0.02
14/03/2012	0.016	<0.01	53	<0.01	<0.001	7.9	<0.002	36	150	0.03
20/04/2012	0.21	<0.01	73	<0.01	<0.001	7.8	<0.002	61	200	0.02
23/05/2012	0.57	<0.01	84	<0.01	<0.001	7.6	<0.002	120	330	0.03
21/06/2012	0.5	<0.01	54	<0.01	<0.001	7.7	<0.002	110	270	0.01
26/07/2012	0.098	<0.01	110	<0.01	<0.001	8	<0.002	77	370	0.02
15/08/2012	0.4	<0.01	71	<0.01	<0.001	7.4	<0.002	120	320	0.04
14/09/2012	0.61	<0.01	93	<0.01	<0.001	7.5	<0.002	150	370	0.03
11/10/2012	0.17	0.02	210	0.01	0.001	8.2	<0.002	59	570	0.03

Continued	Sawye	rs Swam	np Cree	ek @ 1250	m near GV	W Bore D5	, EANSW	Site 83		
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
14/11/2012	0.043	0.03	250	<0.01	<0.001	8.2	<0.002	47	640	0.03
12/12/2012	0.026	0.02	240	<0.01	0.001	8.6	<0.002	27	640	0.06
16/01/2013	<0.001	0.03	220	<0.01	0.002	8.5	<0.002	27	690	0.03
20/02/2013	<0.001	0.03	270	<0.01	<0.001	8.5	<0.002	24	620	0.02
13/03/2013	<0.001	0.02	250	<0.01	<0.001	8.4	<0.002	26	560	0.03

Sawyers Creek @12	awyers Creek @1250m – upstream seepage from KVAD wall and Below v-notch Seepage Point. EANSW Site 93																		
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Mg
Average	<0.001	278	0.26	0.008	0.22	0.027		10	<0.0002	11	688	0.001		0.786	0.28	<0.00005	9	6	0.001
Maximum	<0.001	520	0.66	0.015	0.50	0.041		21	<0.0002	17	1000	0.002		1.400	1.70	<0.00005	13	12	0.002
Minimum	<0.001	63	0.10	0.002	0.09	0.015		5	<0.0002	5	280	0.001		0.200	0.01	<0.00005	4	2	0.001
50th Percentile	<0.001	180	0.21	0.010	0.20	0.026		10	<0.0002	11	575	0.001		0.600	0.10	<0.00005	9	6	0.001

Sawyers Creek @1250m - upstream seepage from KVAD wall and Below v-notch Seepage Point. EANSW Site
93 from June, 2012

So nom ound, 2012										
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average	0.25	0.02	148	<0.01	0.001	8.0	<0.002	67	435	0.03
Maximum	0.61	0.03	270	0.010	0.002	8.6	<0.002	150	690	0.06
Minimum	0.02	0.01	53	<0.01	0.001	7.4	<0.002	24	150	0.01
50th Percentile	0.17	0.02	105	<0.01	0.001	8.1	<0.002	55	370	0.03

aurecon Leading. Vibrant. Global.

Seepage Water Northern wall collection pit near GW6

Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Co	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Li	Mg
21-Feb-11										19		1055									
04-Mar-10												808									
23-Mar-10										24		803									
15-Apr-10																					
26-May-10																					
15-Jun-10										25		817									
20-Jul-10										20		812									
18-Aug-10										20		833									
14-Sep-10										20		814									
12-Oct-10										19		854									<u> </u>
10-Nov-10										20		887									<u> </u>
10-Dec-10										19		932									<u> </u>
10-Jan-11										21		985									
21-Feb-11										19		1055									
15-Mar-11										19		1200									
17-Apr-11										20		1300									<u> </u>
20-May-11										20		1200									<u> </u>
22-Jun-11										19		1500		1							
25-Jul-11										19		1500									<u> </u>
																					──
23-Aug-11										20		1500									

Seepage wate					-													r	-		
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	Со	COND	Cr	CrIV	Cu	F	Fe	Hg	к	Li	Mg
21-Sep-11										20		1400									
21-Oct-11										18		1600									
28-Nov-11										19		1600									
16-Dec-11										19		1700									
30-Jan-12										18		1500									
28-Feb-12										18		1500									
30-Mar-12										18		1700									
24-Apr-12										16		1700									
30-May-12										17		1700									
29-Jun-13										17		2000									
26-Jul-13										18		2100									
22-Aug-12										18		1800									
19-Sep-12										18		2100									
25-Oct-12										17		2200									
14-Nov-12																					
28-Dec-12										17		2400									
29-Jan-13										17		2400									
20-Feb-13																					
26-Mar-13										18		2900									

Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
1-Feb-10						4.2		490		
24-Feb-10						6.08				
17-Mar-10						5.58				
15-Apr-10										
26-May-10										
9-Jun-10						5.81				
1-Jul-10						5.7				
25-Aug-10						5.7				
23-Sep-10						6		350		
28-Oct-10						4.2				
23-Nov-10						4.2		370		
9-Dec-10						4		380		
13-Jan-11						3.9		430	720	
24-Feb-11						4.2		490		
24-Mar-11						3.5		510	760	
8-Apr-11						3.4		550	870	
12-May-11						4.6		600	950	
10-Jun-11						3.3		620	980	
25/07/2011						3.4		670	1000	
23/08/2011						3.3		690	1100	
						5.2		700		
21/09/2011										
21/10/2011						3.3		730	1200	
28/11/2011						3.3		690	1100	
16/12/2011						3.7		800		
30/01/2012						5.6		750		
28/02/2012						3.2		650	1100	
30/03/2012			$\left \right $			3.1		730	1100	
24/04/2012			$\left \right $			3.3		750	1200	
30/05/2012			$\left \right $			3.4		890	1400	
29/06/2012			$\left \right $			3.1		960	1600	
26/07/2012			$\left \right $			3.1		1100	1300	
22/08/2012						5.6		1200	1700	

Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
19/09/2012						4.1		1200	1800	
25/10/2012						5.7		1200	1500	
21/11/2012										
12/12/2012						3		1200	1700	
29/01/2013						2.9		1200	1800	
22/02/2013										
26/03/2013						2.9		1400		

Seepage water North	eepage water Northern wall collection pit near GW6 Groundwater from the KVAD on the northside drains. All water reports to the pipe out to the Lisdale Cut.																		
Date	Ag	ALK	AI	As	В	Ва	Be	Ca	Cd	CI	COND	Cr	CrIV	Cu	F	Fe	Hg	К	Mg
Average										19	1462								
Maximum										25	2900								
Minimum										16	803								
50th Percentile										19	1500								

Seepage water Nort water reports to the			-		6 Groundw	ater from	the KVAD	on the no	orthside dı	ains. All
Date	Mn	Мо	Na	Ni	Pb	рН	Se	SO4	TDS	Zn
Average						4.2		769	1244	
Maximum						6.1		1400	1800	
Minimum						2.9		350	720	
50th Percentile						3.9		700	1150	

aurecon

Aurecon Australia Pty Ltd

ABN 54 005 139 873 Level 2, 116 Military Road Neutral Bay NSW 2089 PO Box 538 Neutral Bay NSW 2089 Australia

T +61 2 9465 5599
 F +61 2 9465 5598
 E sydney@aurecongroup.com
 W aurecongroup.com

Aurecon offices are located in: Angola, Australia, Botswana, China, Ethiopia, Hong Kong, Indonesia, Lesotho, Libya, Malawi, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.