

Annual Environmental Monitoring Report – Water Management and Monitoring 2020/21

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

28 September 2021

Project No: 0553983_MPAR_AEMR_2021_F01

Document details	
Document title	Annual Environmental Monitoring Report – Water Management and Monitoring 2020/21
Document subtitle	Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project
Project No.	0553983_MPAR_AEMR_2021_F01
Date	28 September 2021
Version	Final
Author	Ruel Muldoon, Dana Windle, Gavin Powell
Client Name	EnergyAustralia NSW Pty Ltd

				ERM approval to issue		
Version	Revision	Author	Reviewed by	Name	Date	Comments
Draft	00	Ruel Muldoon, Dana Windle	Gavin Powell	Tamie Weaver	09.09.2021	Draft
Draft	01	Ruel Muldoon, Dana Windle	Gavin Powell	Tamie Weaver	17.09.2021	Final draft
Final	00	Ruel Muldoon, Dana Windle	Gavin Powell	Tamie Weaver	28.09.2021	Final

www.erm.com Version: Final Project No.: 0553983_MPAR_AEMR_2021_F01 0553983_MPAR_AEMR_2021_F01.docx

Signature Page

28 September 2021

Annual Environmental Monitoring Report – Water Management and Monitoring 2020/21

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Ruel Muldoon

Environmental Consultant

bhill

Dana Windle

Technical Director - Hydrogeology

Gavin Powell

Project Manager

Dr Tamie Weaver

Partner in Charge and Technical Fellow

Environmental Resources Management Australia Pty Ltd Level 15 309 Kent Street SYDNEY NSW 2000

© Copyright 2021 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

www.erm.com Version: Final Project No.: 0553983_MPAR_AEMR_2021_F01

CONTENTS

1.	INTR	ODUCTION	. 1
	1.1	Project Background	1
		1.1.1 Relationship to Other Approvals and Plans	
	1.2	Objectives	
	1.3	Contacts	
	1.4	Scope of Works	3
2.	OPE	RATIONS SUMMARY	. 5
	2.1	Site Water Discharge	5
	2.2	Ash Placement and Geometry	
	2.3	Brine Composition	6
3.	ENVI	RONMENTAL SETTING	. 8
	3.1	Climate	8
	3.2	Geology and Hydrogeology	. 8
	3.3	Hydrology	10
4.	WAT	ER MONITORING AND MANAGEMENT PLAN	11
	4.1	Environmental Goals	11
5.	SURI	FACE WATER ASSESSMENT	12
٠.	5.1	Objective	
	5.2	Surface Water Monitoring Locations and Frequency	
	5.3	Surface Water Monitoring Methodology	
	5.4	Surface Water Quality Dataset	
	5.5	Surface Water Results	
		5.5.1 Upstream Monitoring Results	13
		5.5.2 Midstream Monitoring Results	15
		5.5.3 Downstream Monitoring Results	
	5.6	Summary	17
6.	GRO	UNDWATER	
	6.1	Objective	
	6.2	Groundwater Monitoring Locations and Frequency	
	6.3	Groundwater Monitoring Methodology	
	6.4 6.5	Groundwater Quality DatasetGroundwater Results	
	6.5		
		6.5.1 Groundwater Elevations and Inferred Flow Direction	
		6.5.3 Groundwater Quality opgradient of MFAR (background)	
		6.5.4 Groundwater Quality within Mine Disturbance Area South and South-east of MPAR.	
		6.5.5 Groundwater Quality Adjacent to MPAR (north)	
		6.5.6 Groundwater Quality Adjacent to MPAR and Downgradient	
		6.5.7 Groundwater Quality Adjacent to Brine Waste Holding Ponds	29
	6.6	Summary	30
		6.6.1 Background bores – Up gradient Water Quality	30
		6.6.2 Groundwater Quality within MPAR and the Mine Disturbance Area East of MPAR	30
		6.6.3 Groundwater Quality within Mine Disturbance Area South and Southeast of MPAR	
		6.6.4 Groundwater Quality Adjacent to MPAR (north)	
		6.6.5 Groundwater Quality Adjacent to MPAR and Downgradient	
		6.6.6 Groundwater Quality Adjacent to Brine Waste Holding Ponds	32
7.	EARI	LY WARNING ASSESSMENT	33
	7.1	Trend Assessment Approach	33
	7.2	Groundwater Trend Graphs	33

	7.3	Statistica	al Assessment of Trends	33
	7.4		ssessment Summary	
		7.4.1	Surface Water	
		7.4.2	Groundwater	
	7.5		ntation of Contingency and Mitigation Measures	
8.	CONC	LUSIONS	S	38
9.	REFER	RENCES		40
	9.1	•		
10.	9.2 STATE		F LIMITATIONS	
10.	SIAIE	INIENTO	F LIMITATIONS	41
FIGU	JRES			
APP	ENDIX A	МТ	PIPER CONSENT REQUIREMENTS	
APP	ENDIX B	ST	ORMWATER FLOW VOLUME DATA	
APP	ENDIX C	AS	H REPOSITORY SURVEY	
APP	ENDIX D	BR	INE COMPOSITION DATA	
APP	ENDIX E	SIT	E WEATHER DATA	
APP	ENDIX F	TA	BULATED SURFACE WATER DATA	
APP	ENDIX G	TA	BULATED GROUNDWATER DATA	
APP	ENDIX H	I HY	DROGRAPHS	
APP	ENDIX I	SU	RFACE WATER TRENDS	
APP	ENDIX J	GR	OUNDWATER TRENDS	
APP	ENDIX K	GV	VSDAT DATA ASSESSMENT METHODOLOGY	
APP	ENDIX L	GV	SDAT OUTPUTS	
APP	ENDIX N		LCO SAMPLING METHOD AND QUALITY ASSURANCE AN	ΓY
List	of Table	s in Text		
Table	e 1: Sum	mary of A	Approvals	1
			ls	
			ummary for the Project	
			ical Units	
			r Monitoring Locations	
			Monitoring Network	
Table	e 8: Sum	mary of S	Statistical Assessment for Target Analytes	34

List of Figures

Figure 1 - Site Location

Figure 2 - Site Details

Figure 3 - Schematic of External Batter Placement

Figure 4 - Ash Placement Plan

Figure 5 - Groundwater and Surface Water Monitoring Locations

Figure 6a - Groundwater Contour Plan - November 2020

Figure 6b - Groundwater Contour Plan - June 2021

Figure 7 - Surface Water Summary

Figure 8a - Groundwater Summary - Within MPAR / Mine Disturbance Area East of MPAR

Figure 8b - Groundwater Summary - Within Mine Disturbance Area South and Southeast of MPAR

Figure 8c - Groundwater Summary - Background and Adjacent to MPAR

Figure 8d - Groundwater Summary - Adjacent to MPAR and Downgradient

Figure 8e - Groundwater Summary - Brine Waste Pond Leak Detection Bores

Acronyms and Abbreviations

Name	Description
AEMR	Annual Environmental Monitoring Report
AHD	Australian Height Datum
ANZECC	Australia and New Zealand Environment Conservation Council
ANZG	Australia and New Zealand Guidelines
BCA	Brine conditioned ash
CSP	Coal Settling Pond
DPIE	NSW Department of Planning, Industry and Environment
EC	Electrical conductivity
EnergyAustralia	EnergyAustralia NSW Pty Limited
EPA	Environment Protection Authority
EP&A Act	Environmental Planning and Assessment Act 1979
EPL	Environment Protection Licence
ERM	Environmental Resources Management Australia Pty Ltd
GWSDAT	Groundwater Spatiotemporal Data Analysis Tool
ha	Hectares
LCC	Lithgow City Council
LDP	Licenced Discharge Point
LLI	Lend Lease Infrastructure
LMP	Licenced Monitoring Point
LNAR	Lamberts North Ash Repository
LOR	Limit of reporting
MF	Micro filtration
mg/L	milligrams per litre
ML	Mega litre
MPAR	Mt Piper Ash Repository
MPPS	Mt Piper Power Station
Nalco	Nalco Water – Ecolab
NFR	Non-filterable Residue, also referred to as Turbidity.

Name	Description
NSW	New South Wales
OEMP	Operational Environmental Management Plan
POEO Act	Protection of the Environment Operations Act (NSW) 1997
QA/QC	Quality Assurance and Quality Control
RL	Relative Level
RO	Reverse Osmosis
SWTP	Springvale Water Treatment Plant
TARPs	Trigger Action Response Plans
TDS	Total Dissolved Solids
TKN	Total Kjeldahl Nitrogen
TSS	Total Suspended Solids
WCA	Water conditioned ash
WMP	Water Management and Monitoring Plan
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre

www.erm.com Version: Final Project No.: 0553983_MPAR_AEMR_2021_F01 0553983_MPAR_AEMR_2021_F01.docx

1. INTRODUCTION

Environmental Resources Management Australia Pty Ltd (ERM) was engaged by EnergyAustralia NSW Pty Limited (EnergyAustralia) to prepare an Annual Environmental Monitoring Report (AEMR) for the Mt Piper Brine Conditioned Fly Ash Co-Placement Project (the Project). The Project is located at the Mount Piper Power Station (MPPS), 350 Boulder Road, Portland, New South Wales (NSW) (the site). Refer to Figure 1 showing the location of the site.

The Project is operated under the conditions of development consent DA80/10060 (Mt Piper Consent). The Mt Piper Consent was originally granted under the *Environmental Planning and Assessment Act 1979 (NSW)* (EP&A Act) on 1 April 1982 and has since been modified on eight occasions. The Mt Piper Consent, as currently modified (Modification 8, dated 24 July 2019), authorises the MPPS and ancillary activities, including the Mt Piper Ash Repository (MPAR).

This AEMR has been developed in relation to water management and monitoring aspects of the Project in order to satisfy Conditions 44 and 45 of the Mt Piper Consent, and relevant reporting requirements of the Water Management and Monitoring Plan approved for the Project and dated 28 February 2020 (the WMP). This AEMR reports on the water monitoring carried out for the Project from July 2020 to June 2021 (the reporting period) in accordance with the conditions of the Mt Piper Consent. This AEMR will be provided to the Secretary, the NSW Environment Protection Authority (EPA), the Water Division within the NSW Department of Planning, Industry and Environment (DPIE), WaterNSW, and Lithgow City Council (LCC). Appendix A presents a summary of the relevant aspects of this AEMR as required under the Mt Piper Consent and the WMP.

This report should be read in conjunction with the Statement of Limitations presented in Section 10.

1.1 Project Background

The MPPS is located in the western coalfields of NSW about 18 kilometres northwest of Lithgow. The MPPS is owned and operated by EnergyAustralia. The MPPS is regulated by a number of separate development consents and planning approvals under the EP&A Act, including the Mt Piper Consent. The MPPS is also regulated under the conditions of Environment Protection Licence 13007 (EPL) granted under the *Protection of the Environment Operations Act 1997 (NSW)* (the POEO Act). Table 1 lists the approvals which apply to the Project and form the subject of this AEMR.

Table 1: Summary of Approvals

Approval/ Licence	Details/Comments
Mt Piper Consent	Granted by Minister for Planning under the EP&A Act as currently modified
	The WMP was approved under the conditions of the Mt Piper Consent
EPL No. 13007	EPL held by EnergyAustralia for the MPPS, including the Project.

The Project incorporates brine management and storage facilities on the footprint of the MPPS and the ash emplacement area within the former Western Main Open Cut void adjacent to the operational power generation area. The ash placement area is comprised of the MPAR, which is authorised under the Mt Piper Consent, and the separately approved Lamberts North Ash Repository (LNAR). The MPAR and the LNAR are together referred to as the Ash Repositories. However, this AEMR is limited to the MPAR which was approved under the Mt Piper Consent.

The separately approved Springvale Water Treatment Project (SWTP) is also located on the MPPS footprint but outside of the EPL premises. Both the SWTP and the MPPS contribute brine to the MPAR. The SWTP also contributes solid mixed salts to the MPAR. Key features of the Project area are presented in Figure 2.

The Mt Piper Consent was modified on 3 April 2000 to authorise the co-placement of brine conditioned ash (BCA) in the existing MPAR placement area. This Stage 1 BCA co-placement activity was approved as Modification 4 to the Mt Piper Consent. As required by the conditions imposed as part of Modification 4, an early Water Management Plan was developed and implemented. Due to space limitations in the Stage 1 approval area and to provide for increased brine production due to the upgrade of generating capacity (authorised as Modification 6 to the Mt Piper Consent), a Stage 2 extension to the BCA co-placement area at the MPAR was approved on 23 March 2008 (authorised as Modification 7 to the Mt Piper Consent). A Water Management Plan (*Mt Piper Power Station Brine Conditioned Flyash Co-Placement Extension Water Management and Monitoring Plan* prepared by Connell Wagner and dated 26 September 2008) was prepared and implemented under the conditions of the Mt Piper Consent for the MPAR. This is referred to in this report as the "Prior WMP."

Following the approval of Modification 8 to the Mt Piper Consent (Condition 43A), the Prior WMP was updated to account for construction and operation of a new 60 ML pond (Settling Pond D) at the MPPS. The current WMP was prepared by ERM and is dated 28 February 2020 (ERM, 2020) (the WMP).

It is noted that a separate and broader investigation of surface and groundwater conditions in the vicinity of the Ash Repositories, including the Mt Piper Brine in Ash Co-Placement area is currently being completed in line with the contingency measures identified in the WMP (the independent assessment). Once the independent assessment is completed, the WMP will be further updated to reflect the key findings and provide further detail on the contingency measures proposed.

1.1.1 Relationship to Other Approvals and Plans

While the MPAR is approved under the Mt Piper Consent, the LNAR is separately approved by project approval 09_0186 granted under Part 3A of the EP&A Act on 16 February 2012 (LNAR Project Approval). The conditions of the LNAR Project Approval require:

- implementation of a separately approved Operational Environmental Management Plan. The currently approved plan is the Lamberts North Ash Placement Project Operational Environmental Management Plan 2019 prepared by CDM Smith in 2013 and last revised by EnergyAustralia on 2 September 2019 (LNAR Operations Environment Management Plan (OEMP)). The LNAR OEMP includes a Groundwater Management Plan and a Surface Water Management Plan; and
- the carrying out of groundwater and surface water monitoring programs as specified in the LNAR OEMP. The results of the LNAR monitoring are reported in a separate AEMR prepared in accordance with the conditions of the LNAR Project Approval.

As the LNAR is operated in accordance with the separately approved LNAR OEMP under the conditions of the LNAR Project Approval, this AEMR does not cover water management, monitoring and reporting aspects required under the LNAR OEMP.

In addition, the SWTP was separately approved under development consent number SSD-7592 (SWTP Consent) granted under the EP&A Act in 2017.

1.2 Objectives

The objectives of the AEMR are to meet the reporting requirements of the Mt Piper Consent and the WMP for the reporting period.

This includes the requirements of Condition 45 of the Mt Piper Consent which requires that the AEMR include:

- a summary and discussion of all available results and analyses from Water Monitoring Programs (i.e. those contained in the WMP);
- a discussion of the aims of the WMP and to what degree these aims have been attained in the context of results and analyses of the Water Monitoring Programs; and
- actions taken, or intended to be taken, if any, to mitigate any adverse environmental impacts; and to meet the reasonable requirements of the Secretary, EPA, DPIE Water, WaterNSW or the LCC.

The WMP provides that the AEMR is to involve the following scope of works:

- review of surface water and groundwater quality data;
- review of long-term trends in surface water and groundwater concentrations, with reference to statistical assessment of concentration trends and triggers;
- assessment of the data to evaluate potential interactions with the Wangcol Creek water quality¹;
- reporting when the Environmental Goals have not been achieved;
- an interpretation and discussion of results;
- update on the contingency measures currently being implemented in accordance with the WMP;
 and
- preparation of this report in accordance with the WMP and the Mt Piper Consent.

It is noted that other reporting requirements, including provision of water quality data, form part of the EPL annual return reporting process, with the data also published online as required by regulation. The reporting requirements under the EPL will be provided separately to this AEMR.

1.3 Contacts

The contact details for the key personnel responsible for the environmental management of the Project are listed in Table 2.

Table 2: Contact Details

Contact Person	Organisation	Position	Telephone
Mr Ben Eastwood	EnergyAustralia	NSW Environment Leader	(02) 6354 8111

1.4 Scope of Works

In order to meet the objectives of the AEMR, the following works have been implemented:

- importation of environmental monitoring data provided by EnergyAustralia to the existing ESDAT database for the site;
- export of summary tables for all available water quality and weather data collected by EnergyAustralia from the monitoring conducted in accordance with the WMP;

¹ Note: Wangcol Creek is referred to as "Neubecks Creek" in the WMP and some documents relating to the Project. However, WaterNSW has clarified that the creek is properly called "Wangcol Creek". Accordingly, this AEMR refers to the creek as Wangcol Creek.

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

- export of graphs of selected data collected by EnergyAustralia from the monitoring conducted in accordance with the WMP;
- review of surface water (seven locations), groundwater (25 locations) and leak detection (two locations) monitoring data at the Project area for the reporting period;
- review of changes in water quality data including long-term trends in surface water and groundwater concentrations and water levels;
- assessment of the groundwater data to evaluate potential interactions with Wangcol Creek water quality; and
- preparation of this AEMR to:
 - present an overview of Project operations, including ash placement activities;
 - present findings of the water quality monitoring, including interpretation and discussion of results, in accordance with the WMP;
 - present outcomes of the statistical assessment of water quality data that exceeded Environmental Goals during the reporting period, including a discussion of trigger, action, response plans (TARPs) where implemented;
 - provide an update on the contingency measures currently being implemented at the site in accordance with the WMP; and
 - provide a summary of recommended actions to be taken, if any, to mitigate adverse environmental impacts, and to meet the requirements of the relevant government authorities and the WMP.

This AEMR has been developed with consideration of the ongoing independent assessment of groundwater and surface water conditions in the vicinity of both the MPAR and the LNAR (the independent assessment). Refer to Section 7.5 for further details.

www.erm.com Version: Final Project No.: 0553983_MPAR_AEMR_2021_F01 Client: EnergyAustralia NSW I

Page 4

2. OPERATIONS SUMMARY

All ash placement operations for MPPS, including those within the Project area, are undertaken by the contracted specialist in ash placement. Lend Lease Infrastructure (LLI) is the current service provider for EnergyAustralia in all aspects of ash and dust management in relation to the Project, which is currently managed under an 'operate and maintain' contract with EnergyAustralia. Refer to Figure 2 for a site layout plan that present key features of the Project area.

2.1 Site Water Discharge

During the reporting period, discharge from the Coal Settling Pond (CSP) via the Licenced Discharge Point (LDP01) (now known as LDP12 under the recently revised EPL but referred to as LDP01 in this report for consistency with the WMP) was estimated to be approximately 77 Mega Litres (ML). A data summary for LDP01 is presented in this AEMR as the discharges from LDP01 report to the Final Holding Pond (FHP), and downstream to Licenced Monitoring Point (LMP01) which is located on Wangcol Creek, downstream of the FHP. Both LDP01 and LMP01 are included as monitoring points in the WMP. Figure 2 presents the locations of the CSP and the FHP. Figure 5 presents the locations of LDP01 and monitoring point LMP01.

LMP01 was historically referred to as LDP01 within the EPL and used as the upstream monitoring location for the MPAR and the LDP for the MPPS. The LDP was transferred to LDP01 at the CSP as part of the EPL variation 1569404 in January 2019. Records of discharge flow at LDP01 during the reporting period are provided in Appendix B.

2.2 Ash Placement and Geometry

The MPAR is located within the former Western Main Open Cut mine void in the eastern area of the MPPS facility, which is discussed further in Section 3.2.

The MPPS commenced operations in 1993 and since that time water conditioned ash (WCA) has been placed at the MPAR. WCA and BCA have been placed at the MPAR since 2000, with placement of BCA limited to approved areas, as described below. In accordance with the WMP, the conditioning of the ash occurs at the MPPS, and the conditioned ash is then transferred via conveyors or trucks to the MPAR for placement.

The MPAR has approval for development up to a Relative Level (RL) of 980 m Australian Height Datum (AHD), with the upper surface of the ash to be finished with 1 m of WCA, following the contours of the placement plan approved by the LCC in 1990, as replicated in Figure 3. Further, condition 38A of the Mt Piper Consent requires that the placement of BCA may only occur between the levels of RL 946 m AHD and RL 980 m AHD in approved BCA placement areas (Stage 1 and Stage 2 approval areas). Refer to Figure 2 and Figure 3 for representation of the approved MPAR placement area and schematic of external batter placement.

With reference to Appendix C and Figure 4, BCA continued to be deposited across Stage 1 and Stage 2 approval areas for the Project over the reporting period. Based on information supplied by EnergyAustralia, a total of 415,996 tonnes of BCA was placed in the MPAR over the reporting period. Refer to Table 3 for a summary of the Project operations for the reporting period, with comparison to the previous reporting period.

Table 3: Operations Summary for the Project

Activity	Previous Reporting Period (2019-2020)	Current Reporting Period (2020-2021)
Ash delivered (T)	460,942 ¹	673,885 ²
WCA placed (T)	0	100,343 ¹ ; 257,889 ²
BCA placed (T) ¹	460,942	415,996
Total ash footprint (ha)	74.22 ²	57.45 ¹
Area of repository capped (ha) ²	42.65	42.65

¹ Refers to MPAR only

2.3 Brine Composition

Brine from MPPS is derived from the evaporative cooling process in the cooling towers. As water evaporates from the cooling towers, the concentration of salts contained in the circulating water increases, which would eventually impact upon the operation of the cooling system. A portion of the salty water is therefore regularly blown down and replaced with fresh "make up" water.

In addition, the separately approved SWTP also produces brine from the treatment of mine water from dewatering facilities related to mining operation is the region (Figure 1). The separately approved brine and solid mixed salts from the SWTP is integrated with the MPPS water management system and brine from the SWTP is transferred to the MPPS for use in conditioning ash prior to emplacement in the MPAR.

During the reporting period, blowdown water from the cooling towers was transferred to the Mine Water Buffer Pond for treatment by the SWTP or to the EnergyAustralia Reverse Osmosis (RO) brine concentrators and micro filtration (MF) infrastructure. The EnergyAustralia RO and MF system removes salts from the cooling water system, and recycles distillate back into the cooling water cycle. The SWTP brine crystalliser system produces a mixed salt and a dewatered lime salt. Both the EnergyAustralia RO and MF system and the SWTP transfer the brine stream to Brine Waste Pond A and Brine Waste Pond B for temporary storage. This brine is used to condition the fly ash that is placed in approved BCA placement areas.

Monitoring of the brine over time has shown that the concentration of salts in the brine increased between 1999 and 2003-2006 and decreased between 2003-2006 and 2017. The concentration of salts in the brine further decreased between 2017 and 2019/20. Since then, average concentrations in the brine have generally remained stable (within the same order of magnitude) during the current reporting period for the following parameters:

- alkalinity concentrations in the brine increased from an average of 976 mg/L in 2017 to 14,735 mg/L in 2019/20 and have remained stable at 6,067 mg/L in the reporting period;
- silver concentrations decreased from 10 μg/L in 2017 to <1 μg/L in both 2019/20 and the current reporting period;
- chromium concentrations decreased from 1,050 μg/L in 2017 to 50 μg/L in 2019/20 and have remained stable at 40.4 μg/L in the reporting period; and
- iron concentrations decreased from 1,580 μg/L in 2017 to 151 μg/L in 2019/20 and have remained stable at 340 μg/L in the current reporting period.

² Refers to MPAR and LNAR combined

T - tonnes, ha - hectares

A summary of the changes in brine composition is provided in Appendix D. Notable changes in average brine constituents from 2019/20 to the reporting period (July 2020 to June 2021) are listed below:

- barium concentrations decreased from 1,000 μg/L in 2017 to 6.43 μg/L in 2019/20, but increased again to 116 μg/L in the current reporting period (order of magnitude increase);
- boron concentrations in the brine decreased from an average of 35,800 μg/L in 2017 and 41,500 μg/L in 2019/20 to 9,570 μg/L in the reporting period (77% decrease);
- manganese concentrations in the brine decreased from an average of 7,210 μg/L in 2017 and 5,170 μg/L in 2019/20 to 231 μg/L in the reporting period (95% decrease); and
- nickel concentrations in the brine decreased from an average of 3,880 μg/L in 2017 to 348 μg/L in 2019/20, but increased again to 1,570 μg/L in the current reporting period.

The changing brine composition may be related to the changed source of water being treated (e.g. with inputs from the SWTP) and also the treatment process at the SWTP which may result in a higher proportion of compounds being removed as solid phase. In addition, ERM understands that further concentration of the brine has been occurring over the reporting period via additional treatment through the EnergyAustralia RO and MF system. This has been implemented as a means of minimising the volume of brine requiring co-placement at the MPAR. Brine composition data has been used to inform the surface water and groundwater results discussions below.

3. ENVIRONMENTAL SETTING

Details of the environmental site setting are presented in the following sections to provide context to the surface water and groundwater assessments presented below.

3.1 Climate

The climate data below was provided by EnergyAustralia and is sourced from a weather station on site at MPPS (see Figure 2). A summary of the climate data is presented in Table 4 and a copy of the data is presented in Appendix E.

Table 4: Local Climate Data for 2020/2021

Month	Rainfall Total (mm)	Min. Temperature (°C)	Max. Temperature (°C)
July 2020	5.7	-4	14
August 2020	8.1	-5	18
September 2020	4.5	-2	22
October 2020	73.8	1	25
November 2020	5.0	4	33
December 2020	86.6	4	35
January 2021	101.1	7	33
February 2021	77.4	9	27
March 2021	165.4	4	28
April 2021	1.0	-1	27
May 2021	22.1	-4	20
June 2021	56.3	-3	16
TOTAL / MIN / MAX	607	-5	35

Data from MPPS Weather Station provided by EnergyAustralia

The total rainfall for the reporting period was 607 mm. This is slightly higher than the total reported rainfall of 513.1 mm for 2019/20 (ERM, 2020a), but is lower than the average annual rainfall between 2012 and 2017, which was reported by Aurecon (2017) to be 756.5 mm/year.

The 2020/21 reporting period was characterised by higher than average rainfall which occurred generally between December 2020 and March 2021. This high rainfall period broke the period of relative drought experienced at the site, and more broadly within NSW, between 2017 and 2020.

3.2 Geology and Hydrogeology

The site is located on the western margin of the Sydney Basin, and the geology is characterised by eastward dipping sedimentary deposits. The sedimentary deposits extend approximately 130 km east towards the NSW coast. Structurally, the western margin of the Sydney Basin is not complex, and no significant faulting or folding structures are present in the region surrounding the site (CDM Smith, 2012).

The site is located at an outcrop of the Illawarra Coal Measures, which have been mined throughout the region. The Narrabeen Group, comprised of sandstones, overlies the Illawarra Coal Measures in the vicinity of the site, forming the surrounding hillsides. The Illawarra Coal Measures host the coal seams that were previously mined out in the vicinity of the site, and overlie the Shoalhaven Group. Some characteristics of these units are listed in Table 5.

Table 5: Local Geological Units

Narrabeen Group	Illawarra Coal Measures	Shoalhaven Group
 Sandstones, shale and claystone. Up to approximately 800 m thick in parts, although generally absent in the immediate vicinity of the Ash Repositories. Deposition in estuarine/alluvial, fluvial, and fluvial-deltaic environments. Unconformably overlies Illawarra Coal Measures (Danis et al., 2011). 	 Interbedded shale, sandstone, conglomerate, and coal. Dips 1-2 degrees to the east. Outcrops extensively just east of Portland, exposing the Lidsdale and Lithgow coal seams (refer Section 2.3.2) close to the surface with approximately 15-20 m of sandstone overburden (CDM Smith, 2012). 	 Siltstones, lithic sandstones and conglomerate. Marine sediments. Berry Siltstone / Formation (earlier) & Snapper Point Formation (later). Contains sulfide-bearing material and is acid generating in places where exposed via rock cuttings (SKM, 2010).

Groundwater beneath the site is present within the Illawarra Coal Measures, with a regional groundwater flow direction generally to the east in the vicinity of the site (see Figure 6a to Figure 6b). The natural stratigraphy of the Illawarra Coal Measures in the vicinity of the site is generally as follows:

- Bunnyong Sandstone (Long Swamp Formation) massive sandstone;
- Lidsdale Coal Seam interbedded high ash coal and shale;
- Blackmans Flat Conglomerate coarse sandstone and conglomerate;
- Lithgow Coal Seam; and
- Marrangaroo Conglomerate massive sandstone and conglomerate.

Prior to the placement of ash in the former Western Main Open Cut mine void (now occupied by the MPAR), the bottom of the mine void was covered with mine spoil to a minimum level of 908 m AHD. This was to facilitate groundwater flow from the adjacent areas of the unmined Lithgow coal seam aquifer and mine goaf areas surrounding the Western Main Open Cut mine void (Connell Wagner, 2007). The background groundwater level (water table elevation) prior to the filling of the mine voids and placement of ash was reported to be approximately 910 m AHD.

Historically, groundwater seepage from beneath the MPAR was collected in the Groundwater Collection Basin that was previously located to the east of MPAR (SKM, 2010). In 2012, this basin was filled in with mine spoil and compacted as part of the construction of the adjacent LNAR; the footprint of the former Groundwater Collection Basin is located beneath the LNAR (refer to Figure 2).

The area surrounding the Ash Repositories is characterised by former open cut and below ground coal mining. The below ground mined out areas are variably filled in with goaf, or in some areas remain as voids. Former open cut mines remain as ponds, including within the alignment of Wangcol Creek to the north of MPAR, or have been filled in.

Long term groundwater monitoring at the site indicates that the water table occurs variably in the former below ground mined out areas and open cuts and, away from the Ash Repositories, predominantly in the overlying Bunnyong Sandstone. The water table elevation ranges from approximately 903 m AHD to the southeast up to 918 m AHD to the northeast of the Ash Repositories (refer Figure 6a and Figure 6b). Perched water is present in the southern part of the MPAR.

3.3 Hydrology

The Project site is within the catchment of Wangcol Creek, a tributary of the Coxs River. The site itself sits on the eastern edge of the Great Dividing Range and includes the headwaters of Wangcol Creek.

Locally, Wangcol Creek is present to the north and north-east of the MPAR, approximately 250 m from the active ash placement area at its closest point. Wangcol Creek flows to the east and southeast, and joins the Coxs River approximately 3.2 km east of the site.

Clean water diversion structures divert surface waters around the operational areas of the MPPS, where possible (see Figure 2). Storm water that falls within the operational area of the MPPS is directed to water management and storage infrastructure for use at the Project site.

4. WATER MONITORING AND MANAGEMENT PLAN

The aim of the WMP is to minimise the effect of the placement of ash placement on local natural surface waters and groundwater. The WMP addresses water cycle management associated with the Project. It includes a surface water and groundwater water monitoring program, a requirement for an annual water quality report, and associated TARPs, contingency and strategies for brine reduction as appropriate for the reporting period.

The WMP approved under the Mt Piper Consent outlines the following key elements:

- A water cycle management plan describing the management of surface water run off at the ash repository;
- Brine cycle management including brine minimisation strategies and future mine disposal strategies;
- Water cycle management including the potential uses of multipurpose lined water storages present at the MPPS; and
- Water monitoring program, including surface water and groundwater monitoring, and the Environmental Goals to be adopted.

4.1 Environmental Goals

The Environmental Goals for groundwater and surface water monitoring in the WMP are consistent with those applied to monitoring of the LNAR, as approved in the LNAR OEMP. The Environmental Goals were developed by Aurecon (2009) to account for hardness corrected guideline values, and were presented by CDM Smith (2013).

The Environmental Goals utilise the 95% ecosystem protection values, stock watering, irrigation water or drinking water values based on the Australian and New Zealand Guidelines (ANZG, 2018) water quality guidelines (formerly Australia and New Zealand Environment Conservation Council, ANZECC, 2000), in combination with 90th percentile pre-brine placement local environmental (groundwater/surface water) data, whichever is greater. The local guideline values incorporated into the Environmental Goals are based upon the 90th percentile pre-ash placement water quality results, as measured at surface water quality point WX22 (for surface water) or the former Groundwater Collection Basin (for groundwater).

It is noted that, where the Environmental Goals for groundwater are based on the ANZG (2018) water quality guidelines, these guidelines are applicable to receiving waters and not to groundwater. However, they form an appropriate basis for undertaking a conservative initial screening assessment.

The Environmental Goals adopted for this assessment are presented with the surface water and groundwater data in Appendix F and Appendix G respectively.

5. SURFACE WATER ASSESSMENT

5.1 Objective

The objective of the surface water monitoring program is to identify water quality changes at an early stage so that potential causes can be investigated and, if necessary, effects mitigated. The surface water data is compared between locations and also to the established Environmental Goals to assess changes in water quality and to assess whether the TARPs or contingency measures should be considered and/or implemented.

5.2 Surface Water Monitoring Locations and Frequency

A summary of the surface water monitoring site locations under the WMP is described in Table 6 and presented on Figure 5.

Table 6: Surface Water Monitoring Locations

Site ID	Position	Location Description	Frequency	No. of Samples
LDP01	Upstream	Monitors the storm water in the CSP and discharge from the CSP. It is also described as LDP12 under EPL #13007. Sampling of the CSP is conducted routinely at times when discharge is not occurring. These	As required during discharge ¹	58 (LDP01_CSP)
		samples are differentiated as LDP01_CSP (not discharging) and LDP01 (when discharge is occurring).		12 (LDP01)
LMP01	Upstream	This monitoring point is located north-west of the MPAR. It is located in an upstream position relative to the Ash Repositories and is the location where flow from the headwaters of Wangcol Creek flow out from the MPPS operational area, downstream of the FHP.	Quarterly	35
NC01	Mid-stream	Located midstream in the monitored area of Wangcol Creek, upstream to the Ash Repositories.	Monthly	11
SW_C	Mid-stream	Located within Wangcol Creek, the monitoring location is located midstream in the monitored area of Wangcol Creek and near groundwater monitoring well D107.	Quarterly	12
SW_E	Mid-stream	Located within Wangcol Creek, downstream of former open cuts "Area D" and "Area E."	Quarterly	12
WX22 / SW_F	Downstream	Located in Wangcol Creek at a stream gauge to the east/down-stream of the Ash Repositories. Also WaterNSW monitoring point 212055.	Monthly	12
SW_G	Downstream	Located within the downstream portion of Wangcol Creek, and downstream of WX22, within a former open cut mine working.	Quarterly	12

¹Selected field parameters monitored more regularly

It is noted that monitoring location NC01 missed one scheduled sampling event in August 2020 during the reporting period. Although surface water from WX22 was sampled 12 times, there were two sampling events completed in November 2020 and the July 2020 sampling event was not completed. The surface water schedule has been impacted by scheduling constraints associated with COVID-19, and the frequency of sampling conducted during the reporting period is considered adequate.

5.3 Surface Water Monitoring Methodology

Surface water quality monitoring was undertaken by Nalco Water – Ecolab (Nalco) on behalf of EnergyAustralia. Details regarding the Nalco sampling method and quality assurance and quality control (QA/QC) program are presented in Appendix M.

5.4 Surface Water Quality Dataset

Surface water samples were obtained by Nalco for field and/or laboratory analysis in accordance with the following monitoring and analysis schedule, as outlined within the WMP:

- electrical conductivity (EC μS/cm, field measured);
- pH (field measured);
- Total Dissolved Solids (TDS);
- cations and anions (calcium, chloride, fluoride, potassium, sodium, sulfate) (i.e. major and minor ions);
- alkalinity (total alkalinity, bicarbonate alkalinity, phenolphthalein alkalinity);
- total and dissolved metals (aluminium, arsenic, barium, beryllium, boron, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, selenium, silver, zinc)
 field filtered at 0.45 µm for dissolved analysis;
- non-filterable residue (NFR, turbidity, or Total Suspended Solids TSS);
- total phosphorus; and
- nitrogen, nitrate, nitrite, total kjeldahl nitrogen (TKN).

The trace metals in surface water samples were reported as both total (unfiltered) and dissolved (filtered) samples, except for beryllium and mercury, which were reported as total sample concentrations only.

Evidence of the collection of field QC samples (i.e. rinsate, trip blanks or trip spikes) during the field based programs was not provided. Results of laboratory QC measures including laboratory duplicate, triplicate, internal duplicates, method blanks or spike data were also not presented for review during compilation of this AEMR.

The TSS data for 24 May 2021 at LDP01 was negative in the data set provided by EnergyAustralia and appears to be an erroneous data point.

5.5 Surface Water Results

The surface water field and analytical results obtained for the reporting period are presented alongside the Environmental Goals for surface water in Appendix F and Figure 7. Trend graphs for selected analytes (boron, chloride, manganese, nickel, sulfate and TDS), considered to be indicators of potential changing conditions resulting from the Project, are provided in Appendix I.

5.5.1 Upstream Monitoring Results

Locations LMP01 and LDP01 are considered to be representative of upstream conditions relative to the MPAR in the monitored area of Wangcol Creek.

LDP01 is the licenced discharge point for the MPPS under EPL 13007. The licenced discharge point is located at the CSP, which is a sediment basin for the coal stockpile area. Samples from the CSP are routinely collected prior to discharge events (these are presented as LDP01-CSP). Consequently, the data reported as LDP01-CSP does not represent water quality of the discharge event. Discharge via LDP01 occurs as required following confirmation by laboratory analysis that the water quality is within the approved EPL discharge limits. Samples are collected of the discharge from LDP01 and these are presented as LDP01.

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Discharge from LDP01 enters the western clean water drain, which is part of the upstream Wangcol Creek catchment, before flowing into the FHP. The FHP holds storm water from the clean water diversions from around the MPPS, and can be closed in the event of an environmental incident to limit the likelihood of adverse impacts to the downstream surface water environment. The FHP was constructed within Wangcol Creek and it operates as the final pollution control structure before water reaches the "off premises" portion of Wangcol Creek. LMP01 is the sampling location downstream of the FHP.

LDP01 and LMP01 are located upstream of the MPAR and water quality at these locations is not considered to be influenced by activities at the Ash Repositories. However, other aspects of the Project (e.g. brine transfer pipelines and brine waste holding ponds) are located within the catchment upstream of these sampling locations.

Only data for LDP01 (i.e. when discharging) is presented in the following written sections of this report and in Figure 7. Data from both LDP01 and LDP01-CSP (i.e. not discharging) is presented in Appendix F, however assessment of trends and statistical assessment of LDP01 and LDP01-CSP have not been conducted as these locations are not considered to be representative of in-stream conditions. Assessment of trends at LMP01, which receives flow from LDP01, has been conducted as it is considered most appropriate for assessment of potential impacts from the Project on the upstream section of Wangcol Creek.

5.5.1.1 Field Parameters

Field parameters monitored at LMP01 and LDP01 for the reporting period are summarised as follows:

- pH values (field measured) of surface water samples from LMP01 were 7.17 to 9.4. The pH at LMP01 was outside of the range (more alkaline) of the Environmental Goal (6.5 8) during some sampling events in July, August, October, January, February, March, April and June of the reporting period. LDP01 pH values were 7.07 to 7.95, all within the range of the Environmental Goal; and
- Field EC values obtained from LMP01 were 160 μS/cm to 568 μS/cm and field EC values from LDP01 were between 307 μS/cm and 492 μS/cm. The reported EC values were generally consistent with TDS concentrations (where reported) and all field EC and laboratory TDS values were below the Environmental Goals for surface water.

5.5.1.2 Major and Minor Ions

Throughout the reporting period, reported concentrations of major ions for which there are Environmental Goals (chloride, fluoride, and sulfate) at LMP01 and LDP01 were below the relevant Environmental Goals for surface water.

Trend graphs for LMP01 show fluctuations of sulfate and chloride over time however the concentrations appear steady and generally within the historical range. High sulfate and chloride results relative to the historical dataset were reported intermittently from July 2019 to January 2020. The spike in concentrations was attributed to brine leak events which occurred in 2019/20 (ERM, 2020a); these were notified to the EPA and rectified.

5.5.1.3 Metals

Throughout the reporting period copper, iron, molybdenum, nickel and selenium were identified on one or more occasions at concentrations above the relevant Environmental Goals for surface water at LMP01 or LDP01 as presented in Appendix F, and summarised in Figure 7.

Silver concentrations were reported below the limit of reporting (of <1 μ g/L) for the entire reporting period at both LMP01 and LDP01; however, the limit of reporting exceeds the Environmental Goal for surface water of 0.05 μ g/L. Based on the results of previous monitoring, including concentrations of silver in brine (<1 μ g/L during 2019/20 and the current reporting period) and groundwater, silver is not considered to represent a constituent of concern for monitoring in accordance with the WMP.

period.

Trend graphs for LMP01 show fluctuations of boron, manganese and nickel over time; the concentrations appear steady and generally within the historical range. Concentrations of boron and manganese were below the Environmental Goals for surface water during the current reporting

5.5.2 Midstream Monitoring Results

Locations NC01, SW_C and SW_E are considered to represent midstream conditions relative to the MPAR in the monitored area of Wangcol Creek.

Locations NC01 and SW_C are located north of the MPAR along an area of Wangcol Creek that is not known to have been subject to open cut mining operations. SW_E is located further downstream of NC01 and SW_C, to the east of the MPAR and immediately downstream from an area of Wangcol Creek that was historically subject to open cut mining activities.

The surface water field and analytical results obtained from sample points NC01, SW_C and SW_E, for the reporting period are presented in Appendix F, and summarised in Figure 7.

A brief discussion of results is presented in the following subsections.

5.5.2.1 Field Parameters

Field parameters monitored at NC01, SW_C and SW_E for the reporting period are summarised as follows:

- pH (field) values were 6.56 to 7.82, with no results reported outside of the Environmental Goal range for surface water;
- Field EC values reported at NC01, SW_C and SW_E ranged from 146 μS/cm to 590 μS/cm, and field EC values were generally consistent with laboratory TDS results, with no results reported outside of the Environmental Goals for either EC or TDS;
- Trend graphs show TDS concentrations at NC01 and SW_C have remained low and stable. TDS at SW_E showed a spike in concentrations during the 2019/20 reporting period, but TDS concentrations subsequently returned to within the historical range and did not exceed the Environmental Goal in the current reporting period; and
- EC and TDS values at SW_E were generally higher compared to those at NC01 and SW_C.

5.5.2.2 Major and Minor Ions

Throughout the reporting period, major and minor ions including chloride, fluoride, and sulfate were reported at NC01, SW_C and SW_E at concentrations that were below the Environmental Goals for surface water.

Trend graphs for chloride and sulfate are consistent with TDS, and show chloride and sulfate concentrations at NC01 and SW_C have remained low and stable. Consistent with increased TDS and EC values, concentrations of chloride and sulfate in surface water from SW_E spiked during 2019/20, but have returned to concentrations below the Environmental Goals during the current reporting period.

Consistent with EC and TDS, the major ion concentrations at SW_E were generally higher compared to those at NC01 and SW_C.

5.5.2.3 Metals

Throughout the reporting period iron and nickel were identified on one or more occasions at concentrations above the relevant Environmental Goals for surface water at NC01, SW_C and SW_E as presented in Appendix F, and summarised in Figure 7. Consistent with major ion concentrations and TDS and EC values, the nickel concentrations are higher at SW_E, and SW_E accounts for all nickel exceedances from the midstream monitoring locations. Exceedances of total iron were reported at all midstream locations, but filtered iron only exceeded the Environmental Goals at SW_E.

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Trend graphs for boron, manganese and nickel are consistent with TDS, and show concentrations of these selected metals at NC01 and SW_C have remained low and stable. Boron, manganese and nickel at SW_E spiked during the 2019/20 reporting period, but decreased to within the historical range during the current reporting period, although nickel concentrations remain above the Environmental Goals for surface water.

5.5.3 Downstream Monitoring Results

Locations WX22 (SW_F) and SW_G are considered to be downstream conditions relative to the MPAR in the monitored area of Wangcol Creek.

Both WX22 and SW_G are located east of the MPAR along an area of Wangcol Creek that is downstream of and, in the case of SW_G, has been subject to open cut mining operations.

The surface water field and analytical results obtained from sample points WX22 (SW_F) and SW_G for the reporting period are presented in Appendix F, and summarised in Figure 7.

A brief discussion of results is presented in the following subsections.

5.5.3.1 Field Parameters

Field parameters monitored at WX22 and SW_G for the reporting period are summarised as follows:

- Field pH values ranged from 6.72 to 7.58 and were within the Environmental Goal range for pH in surface water;
- Field measured EC values ranged from 211 μS/cm to 930 μS/cm and were generally consistent with laboratory determined TDS values. EC and TDS were reported below the respective Environmental Goals for surface water at both locations during the reporting period; and
- Trend graphs for WX22 and SW_G show TDS has fluctuated over time. Concentrations of TDS typically increase during summer months, with TDS exceeding the Environmental Goal for surface water at WX22 during February 2014, February 2018 and most recently in January 2020. The trends at SW_G are similar to those described for WX22; however, monitoring data at SW_G has only been collected since May 2018. TDS remained below the Environmental Goal for surface water during the current reporting period.

5.5.3.2 Major and Minor Ions

Throughout the reporting period, concentrations of cations and anions including chloride, fluoride, and sulfate were reported at WX22 and SW_G at concentrations that were below the relevant Environmental Goals.

Trend graphs for WX22 and SW_G show chloride and sulfate concentrations have fluctuated over time and are consistent with TDS trends (i.e. typically increase during summer months). As per TDS concentrations, chloride and sulfate concentrations were highest during February 2014, February 2018 and January 2020 (in the 2019/20 reporting period), but concentrations of both analytes remained below the Environmental Goals during the current reporting period.

5.5.3.3 Metals

Throughout the reporting period, iron and nickel were identified on one or more occasions at concentrations above the Environmental Goal for surface water at WX22 or SW_G, as presented in Appendix F, and summarised in Figure 7.

Trend graphs for WX22 and SW_G show boron, manganese and nickel concentrations have fluctuated over time and are generally consistent with TDS trends (i.e. concentrations of these selected metals typically increase during summer months). Boron and manganese concentrations were reported below the Environmental Goal for surface water during the current reporting period. Concentrations of nickel fluctuate and exceeded the Environmental Goal periodically throughout the reporting period.

5.6 Summary

Copper, iron, molybdenum, nickel and selenium and pH results were reported to exceed the relevant Environmental Goals for surface water at upstream monitoring locations (LDP01 and LMP01) at times during the reporting period.

However, with the exception of iron concentrations, results from midstream monitoring locations NC01 and SW_C were typically below the Environmental Goals for surface water. Iron concentrations and nickel concentrations were higher and exceeded the Environmental Goals for surface water at midstream monitoring location SW_E. The surface water quality at the midstream locations is improved during the current reporting period, compared to the spikes in concentration that were reported during 2019/20. This may reflect the higher rainfall during the current reporting period compared to 2019/20.

At the downstream monitoring locations (WX22 and SW_G), concentrations of iron and nickel in surface water exceeded the relevant Environmental Goals at times during the reporting period. The concentrations of iron and nickel were similar at the midstream monitoring location SW_E and downstream locations WX22 and SW_G. Compared to the spikes in concentration that were reported during the 2019/20 reporting period, the surface water quality at the downstream locations over the current reporting period is improved. This may reflect the higher rainfall during the current reporting period compared to 2019/20.

Iron concentrations consistently exceeded the Environmental Goals at midstream and downstream monitoring locations, and nickel exceeded the Environmental Goals at and downstream of WX22 during the current reporting period. Iron concentrations are related to background signature of iron in the local environment as a result of the mining history and disturbed geology.

Overall, however, surface water quality has improved in midstream and downstream locations compared to the 2019/20 reporting period, likely due to higher rainfall during the 2020/2021 reporting period. The periodic exceedances of Environmental Goals for pH and selected metals (excluding iron) in upstream surface water were not observed to extend to midstream surface water.

6. GROUNDWATER

6.1 Objective

The objective of the groundwater monitoring program is to identify water quality changes at an early stage so that potential causes can be investigated and, if necessary, effects mitigated. The groundwater data is compared; between locations, to historical data, and to the established Environmental Goals to assess changes in water quality and the extent to which changes may be related to activities associated with the Project.

6.2 Groundwater Monitoring Locations and Frequency

A summary of the groundwater monitoring locations is presented in Table 7 and Figure 5.

Table 7: Groundwater Monitoring Network

Bore ID	Location Description	Screened Material	Frequency	No. of Samples in 2020/21
Within MPAR /	mine disturbance area east of MPAR			1
B5	Within the MPAR	Fill	Quarterly	0 (blocked)
SW3-D	Within the southeast portion of the MPAR	Fill – clay/silty clay	Quarterly	0 (dry)
MPGM4/D23	Adjacent (south) of the MPAR	Sandstone	Quarterly	0 (damaged)
MPGM4/D10	East (downgradient) of the MPAR, and adjacent to LN Pond 2.	Fill / mine spoil	Quarterly	4
MPGM4/D11	Within the eastern extent of the MPAR.	Fill beneath the ash	Quarterly	2
MPGM4/D19	East (downgradient) of the Ash Repositories	Fill / mine spoil	Quarterly	4
D113	East (downgradient) of the Ash Repositories. Nested (deeper) with D19	Siltstone	Quarterly	4
Within mine dis	sturbance area – south and southeast of M	/IPAR		
MPGM4/D15	South of the Ash Repositories.	Sandstone and/or shale	Quarterly	3
MPGM4/D16	South of the Ash Repositories.	Sandstone and/or shale	Quarterly	4
MPGM4/D17	South of the Ash Repositories.	Sandstone and/or shale	Quarterly	4
MPGM4/D18	South of the Ash Repositories.	Sandstone and/or shale	Quarterly	4
Adjacent MPAF	R – downgradient			
MPGM4/D1	North-east (downgradient) of the MPAR.	Mudstone, sandstone and coal	Quarterly	4
MPGM4/D9	North-east (downgradient) of the MPAR and adjacent to Wangcol Creek	Alluvial deposits	Quarterly	4

Bore ID	Location Description	Screened Material	Frequency	No. of Samples in 2020/21
D102	North-east (downgradient) of the MPAR and adjacent to Wangcol Creek. Nested (deeper) with D9.	Siltstone	Quarterly	4
D105	East (downgradient) of the MPAR and adjacent Wangcol Creek.	Coal	Quarterly	4
MPGM4/D8	East (downgradient) of the MPAR and adjacent to the northern side of Wangcol Creek.	Alluvial deposits	Quarterly	4
D104	East (downgradient) of the MPAR and adjacent Wangcol Creek.	Sandstone	Quarterly	4
D103	East (downgradient) of the MPAR and adjacent Wangcol Creek.	Coal and/or siltstone	Quarterly	4
MPGM4/D2	East (downgradient) of the MPAR and adjacent Wangcol Creek.	Not known	Quarterly	5
Background and	Adjacent MPAR			
MPGM4/D4	Background groundwater monitoring location, north-west (upgradient) of the MPAR.	Fill	Quarterly	5
MPGM4/D5	Background groundwater monitoring location, north-west (upgradient) of the MPAR.	Mudstone/ Sandstone and coal	Quarterly	5
MPGM4/D3	Background groundwater monitoring location, north (cross gradient) of the MPAR.	Sandstone and/or siltstone	Quarterly	4
D107	North (cross gradient) of MPAR and adjacent Wangcol Creek.	Siltstone and/or shale	Quarterly	4
D106	North (cross gradient) of MPAR and adjacent Wangcol Creek.	Weathered sandstone and/or Shale	Quarterly	4
Brine waste pone	d leak detection bores			ı
MPGM5/D5	Adjacent (downgradient) Brine Waste Pond A	Not known	Quarterly	5
MPGM5/D6	Adjacent (downgradient) Brine Waste Pond B	Not known	Quarterly	3
MPGM/24 and MPGM/25	Adjacent Settling Pond D (north-west)	Not known	Quarterly	0 (dry)
MPGM/26 and MPGM/27	Adjacent Settling Pond D (south-east)	Not known	Quarterly	0 (dry)

Some bores were sampled and results were reported more frequently than the planned quarterly monitoring. In those cases all data has been adopted in this assessment. Information provided by EnergyAustralia (email 10 September 2021) provided the following clarifications as to why some bores were not sampled as frequently as required. Bores MPGM5/D6 and MPGM4/D15 were not sampled quarterly; during February 2021 MPGM5/D6 did not recharge and no sample could be collected, and for one sampling round access to MPGM4/D15 was blocked due to excavation works. Bore MPGM4/D11 was only sampled twice; in November 2020 the bore was buried in ash and in April 2021 the top of the extended bore casing was too high to collect a sample. Bores B5, SW3-D and MPGM4/D23 were not sampled during the reporting period because they were blocked (B5), recorded as dry (SW3-D), or damaged and unable to be sampled (MPGM4/D23).

6.3 Groundwater Monitoring Methodology

Groundwater quality monitoring was undertaken by Nalco on behalf of EnergyAustralia. Details regarding the Nalco sampling method and QA/QC program are presented in Appendix M.

6.4 Groundwater Quality Dataset

Nalco collected groundwater samples from 23 groundwater monitoring bores throughout the reporting period. Samples were obtained for field and laboratory analysis in accordance with the following monitoring and analysis schedule:

- depth to water (to m AHD prior to purging);
- EC (µS/cm, field measured);
- pH (field measured);
- TDS;
- cations and anions (calcium, chloride, fluoride, potassium, sodium, sulfate);
- alkalinity (total alkalinity, bicarbonate alkalinity, phenolphthalein alkalinity); and
- total and dissolved metals (aluminium, arsenic, barium, beryllium, boron, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, selenium, silver, zinc)
 field filtered at 0.45 µm for dissolved metals.

The trace metals in groundwater samples were reported as both total (unfiltered) and dissolved (filtered) samples except for beryllium and mercury, which were reported as total sample concentrations only.

Evidence of the collection of field QC samples (i.e. rinsate, trip blanks or trip spikes) during the field based programs was not provided. Results of laboratory QC measures including laboratory duplicate, triplicate, internal duplicates, method blanks or spike data were also not presented for review during compilation of this AEMR.

The chloride and sulfate concentrations appear to be anomalously low in groundwater from bore D1 during November 2020 compared to the TDS value and the concentrations reported during the remainder of the reporting period. These major ion concentrations may be erroneous, but this is not considered to represent an issue with the overall data interpretation for this bore.

6.5 Groundwater Results

For the purpose of this discussion, the groundwater data review has considered the groundwater monitoring locations (see Figure 5) in five monitoring zones:

- Brine waste pond leak detection bores (MPGM5/D5, MPGM5/D6);
- Bores within MPAR / mine disturbance area east of MPAR (MPGM4/D10, MPGM4/D11, MPGM4/D19, D113);
- Bores within mine disturbance area south and southeast of MPAR (MPGM4/D15, MPGM4/D16, MPGM4/D17, MPGM4/D18);
- Bores adjacent to MPAR downgradient (MPGM4/D1, MPGM4/D9, D102, D105, MPGM4/D8, D104, D103, MPGM4/D2); and
- Background bores (MPGM4/D4, MPGM4/D5) and bores adjacent to MPAR to the north (MPGM4/D3, D107, D106).

Trend graphs for selected analytes (boron, chloride, manganese, nickel, sulfate and TDS) that are considered to be indicators of potential changing conditions resulting from Project activities are provided in Appendix J.

6.5.1 Groundwater Elevations and Inferred Flow Direction

Hydrographs showing groundwater elevations for each bore have been segregated to present graphs for bores in each monitoring zone described above (Appendix H). The hydrographs show that groundwater levels were generally stable during the reporting period, with slight fluctuations in groundwater elevation observed upgradient at bore MPGM4/D5, within the mine disturbance area (bores D16 and D17) and downgradient of MPAR (bores D1, D2 and D9) i.e. generally a lower groundwater elevation in November 2020 and a higher groundwater elevation in April 2021 (after high rainfall and localised flooding in early 2021, Section 3.1). As groundwater elevations were not all measured at the same time, this may influence the observed groundwater level trends.

Based on the data provided by EnergyAustralia, groundwater elevations at bore D11 appear to have decreased by approximately 7 m during the reporting period, from 913.4 m AHD in September 2020 to 906.3 m AHD in June 2021. However, in November 2020, the bore was buried in ash and in April 2021 the top of casing had been extended and was too high to collect a sample from the bore. The apparent decrease in groundwater elevation is therefore considered to be a result of the extended casing (which will need to be re-surveyed) rather than an actual decline in water level.

The groundwater elevation at bore D104 decreased between February and June 2021 by almost 1.5 m, based on the data provided by EnergyAustralia. The elevation of groundwater at bore D11 (including surveying of the top of casing) and bore D104 will continue to be monitored, and trends assessed during the next reporting period.

Consistent with 2019/20 monitoring results, the groundwater elevations at bore D18 fluctuated throughout the reporting period, with a possible correlation to rainfall events. Consistent with data reported during 2019/20, these observations are considered to indicate that the construction of this bore may be compromised.

One groundwater level data point is available for D23 and B5 during the current reporting period, but there was no groundwater level data available for SW3-D. Survey data is not available for bores MPGM5/D5 and MPGM5/D6, so the groundwater levels are reported as metres below top of casing, rather than as groundwater elevations. The presence of water at these locations is not inferred to reflect the regional groundwater table as these bores are installed to approximately 5 m above the water bearing zone targeted by other nearby monitoring bores.

Consistent with previous observations, groundwater elevation contours indicate that regional groundwater flow beneath the MPAR is generally toward the east. The inferred groundwater flow directions have remained relatively consistent throughout the reporting period, as indicated in the seasonal groundwater flow contours presented in Figure 6a and Figure 6b.

6.5.2 Groundwater Quality Upgradient of MPAR (background)

Data obtained from bores MPGM4/D4 and MPGM4/D5 located to the northwest and up hydraulic gradient (background) of the MPAR, are outlined below and compared to the Environmental Goals for groundwater. Bores MPGM4/D4 and MPGM4/D5 are considered to represent background groundwater conditions in the area and, based on their location up hydraulic gradient of MPAR, have not been affected by activities at MPAR. Groundwater monitoring data for the current reporting period is presented in Appendix G, and summarised in Figure 8c. Trend graphs are provided in Appendix J.

6.5.2.1 Field Parameters

Field parameters monitored at these bores for the reporting period are summarised as follows:

- pH values for groundwater from MPGM4/D4 and MPGM4/D5 ranged from 3.39 to 6.05. The pH from bore D4 has been consistently acidic, varying from 3.39 to 3.57 during the reporting period, consistent with the 2019/20 monitoring. Throughout the reporting period the reported pH was generally stable in groundwater from these bores, and consistently lower than the Environmental Goal range for groundwater of 6.5 to 8.0; and
- EC values obtained from field measurements were 750 μS/cm to 1260 μS/cm and remained generally stable throughout the reporting period. TDS values were generally consistent with the field EC. EC and TDS values did not exceed the Environmental Goals for groundwater during the reporting period.

Trend graphs for up gradient (background) bores MPGM4/D4 and MPGM4/D5 show concentrations of TDS in groundwater have been stable and below the Environmental Goal for groundwater through the historical dataset.

6.5.2.2 Major and Minor Ions

Throughout the reporting period, concentrations of major and minor ions, including chloride, fluoride, and sulfate were reported for bores MPGM4/D4 and MPGM4/D5. Concentrations were reported below the relevant Environmental Goals for groundwater at both locations throughout the reporting period.

Trend graphs for up gradient (background) bores MPGM4/D4 and MPGM4/D5 show concentrations of chloride and sulfate are consistent with TDS, and have been stable and below the Environmental Goals for groundwater throughout the historical dataset.

6.5.2.3 Metals

Throughout the reporting period arsenic, iron, lead and manganese were identified on one or more occasions at concentrations above the respective Environmental Goal for groundwater at bores MPGM4/D4 and/or MPGM4/D5, as presented in Appendix G and summarised in Figure 8c. Concentrations of metals were generally higher in groundwater from bore MPGM4/D4 (particularly arsenic and lead) when compared to concentrations in groundwater from bore MPGM4/D5. However, manganese concentrations were higher in groundwater from MPGM4/D5 compared to that from MPGM4/D4.

Trend graphs for up gradient (background) bores MPGM4/D4 and MPGM4/D5 show concentrations of boron, manganese and nickel are consistent with TDS values, and have remained stable and below the Environmental Goal for groundwater throughout the historical dataset, with the exception of the consistent exceedances of the Environmental Goal for manganese in groundwater from MPGM4/D5.

6.5.3 Groundwater Quality within MPAR and the Mine Disturbance Area East of MPAR

Data obtained from groundwater bores situated within the MPAR or in the mine disturbance area immediately to the east (D10, D11, D19 and D113) are summarised below and compared to the Environmental Goals for groundwater. Bores SW3-D, B5 and D23 are located within this area, but due to damaged, blocked or dry bores (insufficient water to sample), no groundwater quality data is available for these bores during this reporting period.

Groundwater monitoring data for the current reporting period is presented in Appendix G, and summarised in Figure 8a. Trend graphs showing concentrations versus time for key analytes are provided in Appendix J.

6.5.3.1 Field Parameters

Field parameters monitored at bores within the MPAR or in the mine disturbance area immediately to the east for the reporting period are summarised as follows:

- PH values of groundwater in this area were slightly acidic, ranging from 5.96 to 6.32 throughout the reporting period. Throughout the reporting period, pH values remained generally stable and similar to those reported in 2019/20; however, they were consistently lower than the Environmental Goal range for groundwater of 6.5 to 8.0; and
- EC values obtained from field measurements were 3,930 μS/cm to 9,860 μS/cm, with average values being lower than in previous reporting period. TDS concentrations ranged from 2,970 mg/L to 8,260 mg/L. Both EC and TDS values in groundwater from these bores were consistently above the Environmental Goals for groundwater during the reporting period.

Trend graphs for data from bores within this area show concentrations of TDS in groundwater have fluctuated over time, with a general increase in concentrations to above the Environmental Goal for groundwater occurring from approximately 2010. The TDS concentrations in groundwater within this area no longer appear to be increasing, although they remain above the Environmental Goal for groundwater. TDS concentrations in groundwater from bores D10, D19 and D113 generally show a decreasing trend since mid 2018. Concentrations of TDS in groundwater from bore B5 (which was not sampled during the current reporting period as the bore was blocked) have previously been reported to be approximately five times the TDS of the other groundwater bores in this area, consistent with its elevation above the regional water table (Appendix H), at the base of the MPAR.

6.5.3.2 Major and Minor Ions

Throughout the reporting period, major and minor ions, including chloride, fluoride, and sulfate were analysed in groundwater from D10, D11, D113 and D19. Sulfate concentrations generally exceeded the Environmental Goal for groundwater throughout the reporting period in groundwater from these four bores. Chloride concentrations in groundwater from bore D11 were consistently above the Environmental Goal for groundwater.

Trend graphs for bores within this area show chloride and sulfate concentrations have fluctuated over time. Consistent with TDS trends, chloride and sulfate concentrations increased in concentrations from approximately 2010 to approximately 2017; however, concentrations no longer appear to be increasing. Although concentrations of sulfate typically remain above the Environmental Goals for groundwater, chloride concentrations have decreased to below the Environmental Goals at D10, D19 and D113 since mid-2020.

6.5.3.3 Metals

Throughout the reporting period boron, chromium, copper, iron, lead, manganese, molybdenum and nickel were measured on one or more occasions at concentrations above the relevant Environmental Goals for groundwater in groundwater from bores D10, D11, D19 and D113. These results are presented in Appendix G, and summarised in Figure 8a. The Environmental Goals for groundwater for boron and iron were exceeded in all samples collected.

Trend graphs for bores within this area show boron, manganese and nickel concentrations have fluctuated over time. These selected metals were first reported at concentrations above the Environmental Goals for groundwater before 2010. Concentrations remain above the Environmental Goals on a consistent basis for boron in groundwater from all bores, and for manganese and nickel in D11. Concentrations of boron, manganese and nickel in groundwater appear relatively stable during the current reporting period at all locations, and have decreased since approximately 2019, particularly at bores D10 and D19 and D113.

6.5.4 Groundwater Quality within Mine Disturbance Area South and Southeast of MPAR

Data obtained from groundwater bores that are considered to be situated within the mine disturbance area to the south and south-east of the MPAR is summarised below and compared to the groundwater Environmental Goals. Bores in this area include D15, D16, D17 and D18 and are located south to south-east of the Mt Piper Ash Repository. Groundwater monitoring data for the current reporting period is presented in Appendix G, and summarised in Figure 8b. Trend graphs are provided in Appendix J.

6.5.4.1 Field Parameters

Field parameters monitored at these bores situated within the Mt Piper Ash Repository and mine spoil disturbance area for the reporting period are summarised as follows:

- pH values in this area were 5.00 to 6.74 and remained generally stable. However, pH values were consistently lower than the Environmental Goal range for groundwater of 6.5 to 8.0 at all locations, with the exception of D18; and
- EC values obtained from field measurements were 670 μS/cm to 3,520 μS/cm with laboratory TDS concentrations of 378 mg/L to 2,870 mg/L. EC and TDS values were consistently above the Environmental Goals for groundwater in groundwater from bores D15 and D17, however were below the Environmental Goals for groundwater in groundwater from bores D16 and D18, consistent with the 2019/20 monitoring.

Trend graphs for bores within this area show concentrations of TDS in groundwater from bores D15 and D17 have been increasing over time and have been above the groundwater Environmental Goal since mid-2013. Concentrations of TDS in groundwater from bore D16 have been increasing since late 2017, although they remain below the Environmental Goals for groundwater. Concentrations of TDS in groundwater from bore D18 appear stable and remained below the Environmental Goals for groundwater.

6.5.4.2 Major and Minor Ions

Throughout the reporting period, concentrations of major and minor ions including chloride, fluoride and sulfate were reported for groundwater from bores D15, D16, D17 and D18. Concentrations of sulfate were generally higher in groundwater from bore D15 and D17, relative to the other locations in this area, and were reported above the Environmental Goal for groundwater at D15 and D17. Chloride was reported below the Environmental Goals in groundwater from all bores. Fluoride was reported to exceed the Environmental Goal for groundwater in groundwater from D18 in November 2020.

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Trend graphs for bores within this area show concentrations of chloride and sulfate in groundwater that are consistent with the TDS observations. Concentrations of chloride and sulfate increased in groundwater from bores D15 and D17 from about 2013 to 2019 and sulfate concentrations in groundwater from bore D15 have been consistently above the Environmental Goal for groundwater since monitoring began in 2012, and for D17 since mid-2014. Although concentrations of chloride and sulfate in groundwater at D16 have been increasing since late 2017, the only exceedance of the Environmental Goals for groundwater from this bore occurred for sulfate in April 2019. Concentrations of sulfate and chloride remained below the Environmental Goals in groundwater from D16 during the current reporting period. Concentrations of chloride and sulfate in groundwater at D18 appear stable and remain below the Environmental Goals for groundwater.

6.5.4.3 Metals

Throughout the reporting period chromium, copper, iron, lead, nickel and zinc were identified on one or more occasions at concentrations above the Environmental Goal in groundwater from bores D15 to D18. Results are presented in Appendix G, and summarised in Figure 8b. Bore D15 accounts for the majority of exceedances in this area, consistent with the 2019/20 monitoring.

Trend graphs for bores within this area show that concentrations of boron, manganese and nickel in groundwater are different from the trends for TDS, chloride and sulfate.

Boron concentrations appear to have remained relatively stable, fluctuating within a similar concentration range at each monitoring bore in this area. The exception is for intermittent spikes in boron concentrations at D15 through the historical dataset, including during the 2019/20 reporting period. Concentrations of boron in groundwater from D15 and the other bores in this area were below the Environmental Goal for groundwater during the reporting period.

Concentrations of manganese appear relatively stable, although variable, at each location in this area. The highest manganese concentrations were reported in groundwater from D15 and D17. These were similar in magnitude, and higher than concentrations in groundwater from bores D16 and D18. Manganese concentrations in groundwater from bores D15 and D17 show an overall decreasing trend since approximately mid-2019. Manganese concentrations in groundwater from all bores in this area remained below the Environmental Goal for groundwater throughout the historical dataset and the reporting period.

Concentrations of nickel appear stable, although variable, since at least 2014. Concentrations in groundwater from bore D15 were higher than in groundwater from the other wells in this area and have remained above the Environmental Goal since 2017. However, nickel concentrations in groundwater from D15 have, overall, decreased since 2019 and have continued to decrease during the current reporting period. Concentrations of manganese in groundwater from D16, D17 and D18 appear generally stable since at least 2014 and have remained below the Environmental Goal for groundwater throughout the historical dataset.

6.5.5 Groundwater Quality Adjacent to MPAR (north)

Groundwater data obtained from groundwater bores MPGM4/D3, D106 and D107 adjacent and to the north of the MPAR (cross gradient) are summarised with reference to the Environmental Goals for groundwater below. Groundwater monitoring data for the current reporting period is presented in Appendix G, and summarised in Figure 8c. Trend graphs are provided in Appendix J.

6.5.5.1 Field Parameters

Field parameters monitored at bores adjacent and to the north of the MPAR (cross gradient) for the reporting period are summarised as follows:

pH values in this area were 5.84 to 6.22, indicating slightly acidic groundwater conditions, and were consistently lower than the Environmental Goal range for groundwater of 6.5 to 8.0 throughout the reporting period; and Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

EC values obtained from field measurements ranged from 306 μS/cm to 15,330 μS/cm and were generally consistent with laboratory TDS values reported between 196 mg/L and 14,400 mg/L. Field EC and TDS values were consistently above the Environmental Goals for groundwater at D106 and D107, however values in groundwater from bore MPGM4/D3 remained below the Environmental Goals throughout the reporting period.

Trend graphs show the concentrations of TDS in groundwater from bore MPGM4/D3 has been stable and below the Environmental Goal for groundwater throughout the historical dataset. This is consistent with data from up gradient (background) bores MPGM4/D4 and MPGM4/D5.

Trend graphs for bores D107 and D106 show concentrations of TDS in groundwater are higher and have remained above the Environmental Goal since September 2018, when these bores were first sampled.

6.5.5.2 Major and Minor Ions

Throughout the reporting period, concentrations of major and minor ions, including chloride, fluoride and sulfate, were reported for groundwater from MPGM4/D3, D106 and D107. Concentrations of these ions were generally higher in groundwater from bores D106 and D107 when compared to those in groundwater from bore MPGM4/D3. Sulfate and chloride concentrations have consistently been above the Environmental Goals for groundwater in groundwater from bores D106 and D107 since they were first sampled in 2018, while concentrations at bore MPGM4/D3 remained below the Environmental Goals for groundwater. Fluoride concentrations in groundwater from each of these bores were below the Environmental Goal for groundwater.

Consistent with TDS, trend graphs of chloride and sulfate concentrations in groundwater from bore MPGM4/D3 indicate that concentrations have been stable and below the Environmental Goals throughout the historical dataset. This is consistent with up gradient (background) bores MPGM4/D4 and MPGM4/D5.

Also consistent with TDS, trend graphs indicate that chloride and sulfate concentrations in groundwater from bores D107 and D106 have been higher and have remained above the Environmental Goals for groundwater since September 2018 when these bores were first sampled.

6.5.5.3 Metals

Throughout the reporting period boron, chromium, copper, iron, lead, manganese, mercury and nickel were identified on one or more occasions at concentrations above the Environmental Goals in groundwater from bores MPGM4/D3 (chromium, iron, and mercury), D106 and D107. Results are presented in Appendix G, and summarised in Figure 8c. Similar to TDS and major and minor ions, concentrations in groundwater from bore MPGM4/D3, located further upstream were generally lower than concentrations in groundwater from bores D106 and D107. Bores D106 and D107 accounted for the majority of exceedances.

Trend graphs for bores MPGM4/D3, D106 and D107 show concentrations of boron, manganese and nickel are generally consistent with TDS values. Trend graphs for bore MPGM4/D3 show concentrations of these selected metals have been stable and below the Environmental Goals for groundwater through the historical dataset. This is consistent with up gradient (background) bores MPGM4/D4 and MPGM4/D5.

Trend graphs for bore D107 and D106 show concentrations of boron, manganese and nickel in groundwater are higher and have been above the Environmental Goals for groundwater since September 2018 when these bores were first sampled.

6.5.6 Groundwater Quality Adjacent to MPAR and Downgradient

Groundwater data obtained from groundwater bores MPGM4/D1, MPGM4/D9, D102, D105, MPGM4/D8, D104, D103, MPGM4/D2 located adjacent to and down hydraulic gradient of the MPAR are summarised below, with reference to the Environmental Goals for groundwater. Groundwater monitoring data for the current reporting period is presented in Appendix G, and summarised in Figure 8d. Trend graphs are provided in Appendix J.

6.5.6.1 Field Parameters

Field parameters monitored at bores located adjacent to and down hydraulic gradient of the MPAR for the reporting period are summarised as follows:

- pH values in groundwater from these bores ranged from 5.49 to 6.6, indicating slightly acidic groundwater conditions throughout the reporting period. pH levels remained generally stable, however, were consistently lower than the Environmental Goal range for groundwater of 6.5 to 8.0 at all locations throughout the reporting period, with the exception of the pH at bore D2 in July 2020; and
- EC values obtained from field measurements were 211 μS/cm to 10,420 μS/cm. The EC results were comparable to laboratory TDS values reported at 194 mg/L to 9,520 mg/L. Over the reporting period, EC and TDS values were consistently above the Environmental Goals in groundwater from bores MPGM4/D1, MPGM4/D9, D102, D103 and D105. No exceedances of the EC and TDS Environmental Goals for groundwater were reported for groundwater from bores MPGM4/D2, D104 and MPGM4/D8.

Trend graphs show that, in groundwater from most bores in this area, concentrations of TDS in groundwater have been increasing over time, commencing with MPGM4/D1 and MPGM4/D9 since 2011/2012. TDS concentrations in groundwater from MPGM4/D1 have consistently been reported above the Environmental Goal for groundwater since 2013. TDS concentrations in groundwater from MPGM4/D9 were above or near the Environmental Goal from 2013 to early 2018, and have increased since 2018.

Trend graphs for bores D102, D103 and D105 show the concentrations of TDS in groundwater from these bores have remained above the Environmental Goal for groundwater since September 2018 when these bores were first sampled.

Trend graphs for groundwater from bores D104 and MPGM4/D8 show fluctuating although stable TDS concentrations over time; concentrations were below the Environmental Goal throughout the historical dataset.

TDS concentrations in groundwater from bore MPGM4/D2 have decreased since early 2020 and remained stable and below the Environmental Goal during the reporting period.

6.5.6.2 Major and Minor Ions

Throughout the reporting period, concentrations of major and minor ions, including chloride, fluoride and sulfate, were reported in groundwater from bores MPGM4/D1, MPGM4/D2, MPGM4/D8, MPGM4/D9, D102, D103, D104 and D105, with concentrations of chloride and sulfate exceeding the Environmental Goals for groundwater throughout the reporting period. One fluoride concentration, measured in groundwater from bore MPGM4/D9 in April 2021, also exceeded the Environmental Goal.

Concentrations of major and minor ions were generally lower in groundwater from bores MPGM4/D2, MPGM4/D8 and D104 when compared to concentrations in groundwater from bores MPGM4/D1, MPGM4/D9, D102, D103 and D105. The difference in groundwater quality between these locations is considered likely to be due to the spatial distribution of these locations relative to the MPAR and related groundwater flow paths.

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Sulfate was reported at concentrations above the Environmental Goal in groundwater from bores MPGM4/D1, D102, MPGM4/D9, D103 and D105, except during November 2020 at bore MPGM4/D1 (which may be erroneous, as noted in Section 6.4). No exceedances of the sulfate Environmental Goal for groundwater were reported at bores MPGM4/D2, MPGM4/D8 and D104 during the reporting period.

Chloride was reported at concentrations that were consistently above the Environmental Goal in groundwater from bores MPGM4/D1, D102 and MPGM4/D9, except during November 2020 at bore MPGM4/D1 (which may be erroneous, as noted in Section 6.4). Chloride concentrations in groundwater from D103 were equal to the Environmental Goal in August 2020, and no exceedances of the chloride Environmental Goal were reported in groundwater from bores MPGM4/D2, MPGM4/D8, D103, D104 and D105.

Trend graphs for bores within this area show concentrations of chloride and sulfate in groundwater are consistent with TDS and, in all but bore D8, have been increasing over time, commencing with MPGM4/D1 and MPGM4/D9 near the beginning of 2011. Sulfate has consistently been reported at above the Environmental Goals for groundwater in groundwater from MPGM4/D1 and MPGM4/D9 since early 2013, while chloride has consistently been reported at above the Environmental Goals for groundwater at MPGM4/D1 since early 2015 and MPGM4/D9 since August 2018.

Chloride concentrations in groundwater from MPGM4/D2 generally increased, although fluctuating, until January 2020 when concentrations declined. Similar trends are apparent in sulfate concentrations in groundwater from MPGM4/D2 although sulfate concentrations increased above the Environmental Goal in 2013 and, most recently have declined to concentrations below the Environmental Goal since January 2020. Sulfate and chloride concentrations have been stable in groundwater from MPGM4/D2 since decreasing in early 2020.

Trend graphs for bore D103 show the concentration of sulfate has remained generally stable, above the Environmental Goal since September 2018 when the bore was first sampled. Concentrations of chloride in groundwater from D103 have declined since monitoring commenced, and have been below the Environmental Goal for groundwater since October 2019.

Sulfate concentrations in groundwater from D105 appear to be stable and consistently above the Environmental Goal for groundwater. Chloride concentrations in groundwater from D105 appear to be stable and consistently below the Environmental Goal for groundwater.

Trend graphs for bores D104 and MPGM4/D8 show fluctuating although stable chloride and sulfate concentrations over time, with concentrations of these analytes consistently reported below the Environmental Goals for groundwater through the historical dataset.

6.5.6.3 Metals

Throughout the reporting period boron, copper, iron, lead, manganese, mercury, and nickel were identified on one or more occasions at concentrations above the relevant Environmental Goals for groundwater at the bores located downgradient of MPAR. Results are presented in Appendix G, and summarised in Figure 8d.

Concentrations of metals were generally lower in groundwater from bores MPGM4/D2, MPGM4/D8 and D104, with concentrations highest in groundwater from bores MPGM4/D1, MPGM4/D9, D102, D103 and D105.

Trend graphs show concentrations of boron, manganese and nickel are generally consistent with TDS values. Concentrations of nickel, manganese and boron have remained stable and below the Environmental Goals in groundwater from MPGM4/D8 and D104. In groundwater from MPGM4/D2, concentrations have fluctuated around the Environmental Goals, but have decreased since early 2020 and are stable, below the Environmental Goals for boron, manganese and nickel.

Trend graphs show that concentrations of boron, manganese and nickel in groundwater have increased over time at MPGM4/D1 and MPGM4/D9 to concentrations that remain above the Environmental Goals for groundwater.

Trend graphs for bores D102, D103 and D105 show relatively stable concentrations of boron, manganese and nickel and generally above the Environmental Goal for groundwater since September 2018 when these bores were first sampled. Concentrations of manganese and nickel appear to have declined at D103 since approximately May 2020.

6.5.7 Groundwater Quality Adjacent to Brine Waste Holding Ponds

Groundwater from groundwater bores MPGM5/D5 and MPGM5/D6, adjacent to the Brine Waste Holding Ponds (to the west and upgradient of the MPAR, but downgradient of the Brine Waste Holding Ponds) are summarised with reference to the Environmental Goals for groundwater below. These bores are installed to approximately 10 m below ground level and were constructed for the purpose of leak detection from the Brine Waste Holding Ponds. Therefore, the presence of water at these locations is not inferred to reflect the regional groundwater table. Groundwater monitoring data for the current reporting period is presented in Appendix G, and summarised in Figure 8e. Trend graphs are provided in Appendix J.

6.5.7.1 Field Parameters

Field parameters monitored at bores adjacent to the Brine Waste Holding Ponds for the reporting period are summarised as follows:

- pH values were 5.66 to 6.38, indicating slightly acidic groundwater conditions throughout the reporting period. pH values were consistently below the Environmental Goal range for groundwater of 6.5 8.0 in groundwater from both MPGM5/D5 and MPGM5/D6 throughout the reporting period; and
- EC values obtained from field measurements at MPGM5/D5 were 13,550 μS/cm to 23,440 μS/cm, and this was consistent with laboratory TDS values reported at 13,000 mg/L to 23,000 mg/L. EC and TDS values consistently exceeded the Environmental Goals for groundwater at bore MPG5/D5. However, EC values obtained from field measurements at MPGM5/D6 were 1,290 μS/cm to 1,570 μS/cm, also consistent with laboratory TDS values reported at 762 mg/L to 955 mg/L, and did not exceed the Environmental Goals.

Trend graphs show that TDS has historically remained below the Environmental Goals at both bores. Although there was a spike in TDS concentrations at MPGM5/D6 in 2019/20, including concentrations above the Environmental Goals, the TDS of groundwater at this bore has since returned to below the Environmental Goals and consistent with the historic range. Groundwater TDS at MPGM5/D5 also spiked in mid-2019 and, although decreasing, remains above the Environmental Goals and historic range for groundwater. The spike in concentrations are considered to be related to a tear identified in the liner at Brine Waste Pond A which was repaired during the 2019/20 reporting period and notified to the EPA (ERM, 2020a).

6.5.7.2 Major and Minor Ions

Throughout the reporting period, concentrations of major and minor ions, including chloride, fluoride and sulfate were reported at bores MPGM5/D5 and MPGM5/D6. Typically concentrations of chloride and sulfate were higher and above the Environmental Goal in groundwater from bore MPGM5/D5, but were lower and below the Environmental Goal at MPGM5/D6.

Fluoride concentrations were reported below the Environmental Goal at both locations; however, the laboratory limit of reporting (LOR) was raised at MPGM5/D5 above the Environmental Goal for groundwater during July 2020 and November 2020.

Trend graphs show a similar trend for chloride and sulfate as for TDS, i.e. a spike in concentrations in 2019 at both bores, with subsequently decreasing concentrations to either below the Environmental Goals and within the historical range (MPGM5/D6) or remaining above the Environmental Goals and historic range (MPGM5/D5).

6.5.7.3 Metals

Throughout the reporting period boron, cadmium, chromium, copper, iron, lead, manganese, mercury, molybdenum, nickel and selenium were identified on one or more occasions at concentrations above the relevant Environmental Goals for groundwater at bores MPGM5/D5 and MPGM5/D6. Results are presented in Appendix G, and summarised in Figure 8e.

Bore MPGM5/D5 accounts for the majority of exceedances from the leak detection bores, with concentrations generally higher from this location compared to MPGM5/D6.

Trend graphs show a similar trend for boron, manganese and nickel as for TDS, i.e. a spike in concentrations in 2019 at both bores, with subsequently decreasing concentrations to either below the Environmental Goals and within the historical range (MPGM5/D6) or remaining above the Environmental Goals and historic range (MPGM5/D5).

6.6 Summary

6.6.1 Background bores – Up gradient Water Quality

Acidic groundwater and concentrations of metals including arsenic, iron, lead and/or manganese that exceeded the Environmental Goals were identified in groundwater from background bores MPGM4/D4 and MPGM4/D5. As these bores are located up hydraulic gradient, and away, from the MPAR the reported results are not considered to be related to the Project activities. The area surrounding the MPAR has been highly disturbed by historical mining activities, and the low pH in this area has been reported as resulting from oxidation of iron sulfide (Connell Wagner, 2007); the elevated metals are likely associated with this oxidation and acidification mobilising metals into groundwater. Trend graphs presented in Appendix J for key analytes in groundwater including TDS, chloride, sulfate, boron, manganese and nickel show that the concentrations of these analytes have remained relatively stable in this area historically, as well as over the reporting period, consistent with them representing background conditions.

6.6.2 Groundwater Quality within MPAR and the Mine Disturbance Area East of MPAR

Elevated EC and TDS values as well as concentrations of sulfate, chloride (D11 only) and metals including boron, chromium, copper, iron, lead, manganese, molybdenum, nickel and zinc were identified at concentrations at or above the Environmental Goals in groundwater from bores within the MPAR, and in downgradient areas to the east (D10, D11, D19 and D113). pH values in groundwater both within and downgradient of the MPAR were typically below (more acidic than) the Environmental Goal for groundwater. The lower pH values are considered to be consistent with background conditions in the area and may result from historical mine disturbance and/or be related to the regional groundwater quality. On this basis, the pH of groundwater in this area will continue to be monitored but is not discussed further.

Concentrations of iron, lead and manganese in groundwater from the bores at and downgradient of the MPAR were a similar order of magnitude to those in groundwater from the background monitoring wells (MPGM4/D4 and MPGM4/D5). These concentrations are considered to be related to background groundwater conditions.

The reported TDS, EC, sulfate, chloride, boron, chromium, copper, molybdenum and nickel concentrations in groundwater from bores in this area are considered elevated relative to upgradient locations. Connell Wagner (2007) reported elevated levels of sulfate, boron, nickel, zinc, manganese and iron previously in this area based on pre-placement ash data from bore B904 (operational between 1997 and 2000), which may have been influenced by goaf underground mine workings to the south of this area. However, concentrations of sulfate, chloride, boron, nickel and zinc and potentially the other metals indicate a different composition relative to the background bores and pre-placement groundwater data from historical bore B904 (from Aurecon, 2017).

In consideration of the brine composition (refer to Appendix D), which also contains elevated concentrations of these constituents, groundwater in this area has been influenced by leaching of BCA higher in the MPAR into the underlying water table. The leaching of constituents from the BCA placement area to the underlying groundwater is currently subject to review and management as part of the independent assessment.

However, there is evidence of decreasing trends in TDS, chloride, sulfate, boron, nickel and manganese in groundwater from D10, D19 and D113 during 2019/20 and stable trends during the current reporting period.

6.6.3 Groundwater Quality within Mine Disturbance Area South and Southeast of MPAR

Concentrations of analytes including sulfate, chloride and metals were typically lower in groundwater from D18 than in the surrounding bores (D15, D16 and D17) in this area; they (D18 results) were also lower than when compared to background concentrations in groundwater from bores MPGM4/D4 and MPGM4/D5. Based on this information, the integrity of bore D18 may have been compromised, allowing fresh water to enter the borehole from the surface or may be directly connected through mine void or fill to surface water. Groundwater elevations in bore D18 are also more variable than in nearby bores, with more rapid responses to rainfall. Based on this information, water quality in bore D18 is not considered to represent groundwater quality in the area.

Elevated concentrations of iron were consistent in groundwater from bores within this area, except at D18, and were comparable to those reported in groundwater from background bores MPGM4/D4 and MPGM4/D5. These iron concentrations, which exceeded the Environmental Goal, are considered to be consistent with background groundwater conditions.

EC, TDS and sulfate concentrations were higher in groundwater from bores D15 and D17 than in the background bores MPGM4/D4 and MPGM4/D5, and exceeded the Environmental Goals for groundwater. Concentrations of nickel and zinc consistently exceeded the Environmental Goals in groundwater from bore D15, and concentrations of copper, lead, nickel and zinc exceeded the Environmental Goals in groundwater from bore D15 only. Concentrations of zinc and nickel in groundwater from bore D15 were more elevated than other bores and relative to background groundwater conditions.

Concentrations of target analytes in groundwater from bore D16 were below the Environmental Goals for groundwater; however trend graphs presented in Appendix J indicate gradual increases in concentrations of sulfate, chloride and TDS in groundwater from bore D16 since early 2018.

Concentrations of target analytes in groundwater from bore D15 that exceed Environmental Goals are considered to be influenced by activities at the MPAR. Bore D15 appears to be located cross gradient, rather than directly down hydraulic gradient of the MPAR; however, the presence of preferential flow paths associated with former mine workings, and other water management activities are likely to be factors in the apparent distribution of the analytes in groundwater. The seepage of constituents from the BCA placement area to underlying and adjacent groundwater is currently subject to review and management as part of the independent assessment.

6.6.4 Groundwater Quality Adjacent to MPAR (north)

Groundwater quality at bore D3, which is the furthest up hydraulic gradient of the bores adjacent to MPAR was similar to the background groundwater conditions identified at background bores MPGM4/D4 and MPGM4/D5. Iron concentrations were within an order of magnitude of concentrations in the background bores, and the low pH values were also comparable to those in groundwater from MPGM4/D5.

Concentrations of EC, TDS, chloride, sulfate, boron, chromium, copper, iron, lead, manganese and nickel exceeded the Environmental Goals in groundwater from bores D106 and D107, located to the north-east of the MPAR. The iron and a component of the manganese concentrations are considered to be related to background water quality in the area, based on concentrations in groundwater from the background bores MPGM4/D4 and MPGM4/D5, in which concentrations were a similar order of magnitude.

The EC, TDS, chloride, sulfate, boron and nickel concentrations in groundwater from bores D106 and D107 are considered to represent changes to water quality and are not primarily related to background and pre-ash placement conditions. These analytes are present at elevated concentrations in the brine and in groundwater beneath and immediately downgradient of the MPAR, and concentrations of analytes in groundwater from bores D106 and D107 are considered to relate to BCA placement activities at the MPAR. The seepage of constituents from the BCA placement area to underlying and adjacent groundwater is currently subject to review and management as part of the independent assessment.

6.6.5 Groundwater Quality Adjacent to MPAR and Downgradient

Some exceedances of the Environmental Goals for iron were reported in groundwater from bores D8 and D104. These concentrations are considered likely to be related to the background water quality in the area, based on concentrations in groundwater from the background bores MPGM4/D4 and MPGM4/D5, which were higher.

Concentrations of TDS, EC, sulfate, chloride, boron, iron, nickel and/or manganese that exceeded the Environmental Goals were reported in groundwater from bores MPGM4/D1, MPGM4/D9, D102, D103, and D105, located down hydraulic gradient of the MPAR. pH values were also typically below the Environmental Goal range for groundwater. The elevated iron and manganese concentrations and the acidic pH values are considered to represent background groundwater conditions in the area.

The concentrations of EC and TDS, chloride, sulfate, copper, nickel and boron that were above the Environmental Goals are considered to represent changes to water quality and are not primarily related to background and pre-ash placement conditions. These analytes are present at elevated concentrations in the brine used to condition the BCA, and in groundwater beneath and immediately downgradient of the MPAR. Concentrations of these analytes in groundwater from bores MPGM4/D1, MPGM4/D9, D102, D103 and D105 are considered to relate to BCA placement activities at the MPAR. This is currently subject to review and management as part of the independent assessment.

The concentrations of these key analytes in groundwater from MPGM4/D2 during the 2020/21 reporting period have declined compared to the previous reporting period, when apparently increasing concentrations were observed. Except for iron and pH, the concentrations of key analytes were below the Environmental Goal during the current reporting period, and the groundwater in this bore is considered to be representative of groundwater conditions in the area.

The intermittent and irregular exceedances of the Environmental Goals for chromium, copper, lead and mercury in groundwater from bores D103, D105 and MPGM4/D2 that occurred during the 2019/20 reporting period did not occur during the current reporting period.

6.6.6 Groundwater Quality Adjacent to Brine Waste Holding Ponds

Concentrations of EC, TDS, chloride, sulfate, boron, cadmium, copper, nickel and selenium in groundwater from MPGM5/D5 have declined from the previous reporting period, although still exceeding the Environmental Goals. These concentrations are considered to be related to a tear identified in the liner at Brine Waste Pond A, which was repaired during the 2019/20 period and notified to the EPA. Concentrations of these analytes in groundwater from MPGM5/D6 have declined since late 2019 and are consistent with historical concentrations at this bore, remaining below the Environmental Goals during the current reporting period.

7. EARLY WARNING ASSESSMENT

In addition to comparing results with the Environmental Goals for surface water and groundwater, an early warning assessment of the groundwater and surface water monitoring data is required as part of the WMP. This assessment includes assessment of concentration trends through time, including statistical analysis where appropriate.

7.1 Trend Assessment Approach

Trends in target analyte concentrations in groundwater and surface water were assessed through a combination of graphical and statistical tools, primarily Groundwater Spatiotemporal Data Analysis Tool (GWSDAT), prepared by Shell Global Solutions (2012) and freely available for use. Trend plots for groundwater (concentrations in groundwater and groundwater elevations vs time) and surface water (concentrations in surface water vs time) were generated for each individual monitoring location where an exceedance of the adopted Environmental Goal was reported during this reporting period. A time period to include the last two reporting periods was adopted for the statistical assessment. Statistical tools were applied and included the use of the Mann-Kendall method to evaluate trends in target analyte concentrations in groundwater and surface water from each individual monitoring location. Further details of GWSDAT and the data assessment methodology are provided in Appendix K.

7.2 Groundwater Trend Graphs

Trend graphs were created for target analyte concentrations for individual monitoring locations to evaluate temporal trends of solute concentrations. The trend graphs also include adopted Environmental Goals. As discussed in Section 5.5 and Section 6.5, trend graphs for the entire data set are presented for surface water and groundwater in Appendices I and Appendix J respectively.

A descriptions of trends relative to historical concentrations over the last ten years (since 2011) and Environmental Goals is provided in Section 5 (for surface water) and Section 6 (for groundwater).

7.3 Statistical Assessment of Trends

Statistical assessment of trends was completed via GWSDAT using the Mann-Kendall procedure. Trend plots from the statistical assessment are presented in Appendix L, and include data from the beginning of the 2019/20 reporting period, and the statistical trend assessment. The p-value presented in these trend plots indicates the level of statistical significance that can be attributed to the trend. A p-value of less than 0.05 relates to a statistical significance of 95%, i.e. if a trend has a p-value of less than 0.05 there is a 95% level of confidence that the data presents an actual trend and not a random distribution of data. The 95% confidence level has been adopted by ERM as an indicator of statistical significance in trends, and trends with these characteristics are shown in green text in the trend plots. Those that are not statistically significant are shown in red text.

Where no p-value is provided on the graphical outputs, a sufficient number of data points were not available to evaluate the significance of trends through the Mann-Kendall test. Concentrations both above and below the laboratory limit of reporting and with respect to the relevant adopted background concentration (where available) are shown.

Further details on the Mann-Kendall procedure are presented in the Western Australia Department of Environment's guidance document entitled *Use of Monitored Natural Attenuation for Groundwater Remediation* (2004).

Table 8 presents a summary from the statistical assessment of trends assessed for all locations and analytes reported above the relevant Environmental Goal during the reporting period.

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Table 8: Summary of Statistical Assessment for Target Analytes

							•	•										
Monitoring Location	As	В	Cd	CI	Cr	Cu	F	Fe	Pb	Mn	Hg	Мо	Ni	Se	SO ₄	Zn	TDS	EC
Surface Wate	r	l	1						I			l	I					
LMP01	-	Down	NT	Down	NT	Down	-	NT	NT	NT	*	NT	NT	NT	Down	NT	NT	-
NC01	-	Down	*	NT	*	Down	-	Down	NT	NT	*	Down	NT	NT	Down	NT	Down	-
SW_C	-	Down	*	NT	*	NT	-	Down	*	Down	*	NT	Down	NT	Down	NT	Down	-
S_E	-	NT	*	Down	NT	NT	-	NT	*	NT	*	NT	Down	NT	Down	NT	Down	_
WX22	-	Down	NT	Down	NT	NT	-	NT	NT	NT	*	NT	NT	NT	Down	Down	Down	-
SW_G	-	NT	*	NT	*	NT	-	NT	*	NT	*	NT	NT	NT	Down	NT	Down	-
Within MPAR	/ mine d	listurban	ce area	east of M	IPAR													
B5								Not samp	pled in cu	ırrent repoi	rting pe	riod						
SW3-D								Not samp	pled in cu	ırrent repoi	rting pe	riod						
D23								Not samp	pled in cu	ırrent repoi	rting pe	riod						
D10	NT	Down	Down	Down	NT	NT	NT	NT	NT	NT	*	Up	Down	Down	Down	Down	Down	Down
D11	NT	NT	*	NT	*	*	NT	NT	*	Down	*	*	NT	NT	Down	NT	NT	NT
D19	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	Down	NT	NT	NT	NT
D113	NT	NT	NT	Down	NT	NT	*	Down	NT	Down	NT	NT	Down	NT	Down	Down	Down	NT
Within mine disturbance area – south and southeast of MPAR																		
D15	NT	NT	NT	Down	NT	NT	*	NT	NT	NT	NT	NT	Down	NT	Down	NT	Down	Down
D16	*	NT	*	Up	Up	*	NT	NT	*	NT	*	*	Up	*	NT	NT	Up	Up
D17	Down	NT	*	NT	NT	*	NT	NT	*	Down	*	*	Down	*	NT	NT	NT	NT
D18	NT	NT	NT	NT	Up	Up	NT	NT	NT	NT	*	Up	NT	NT	NT	NT	NT	NT

MANAGEMENT AND MONITORING 2020/21

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Monitoring Location	As	В	Cd	CI	Cr	Cu	F	Fe	Pb	Mn	Hg	Мо	Ni	Se	SO ₄	Zn	TDS	EC
Background a	and Adja	cent MP	AR – No	rth and N	lortheas	t		'										
MPGM4/D4	NT	*	Down	Up	NT	NT	NT	Down	NT	NT	*	*	Down	Down	Down	Down	Down	Down
MPGM4/D5	*	NT	*	NT	*	*	NT	NT	*	NT	*	*	Down	NT	Down	Down	NT	Down
MPGM4/D3	*	Down	*	NT	Up	NT	NT	NT	*	NT	NT	*	Up	*	Down	NT	NT	Down
D107	NT	NT	NT	NT	NT	NT	*	NT	NT	NT	*	*	NT	NT	NT	NT	NT	Up
D106	NT	NT	NT	NT	NT	NT	*	NT	NT	Down	NT	*	NT	NT	NT	NT	NT	NT
Adjacent MP	AR – dov	vngradie	nt			,	,											
MPGM4/D1	NT	Up	*	NT	*	NT	Up	NT	*	NT	*	*	NT	NT	NT	-	Up	Up
MPGM4/D9	NT	NT	Up	NT	NT	Up	NT	NT	NT	Down	NT	NT	NT	Up	NT	NT	NT	NT
D102	NT	NT	NT	Up	NT	Down	NT	NT	Down	NT	*	*	Up	Down	NT	NT	NT	Up
D105	NT	Up	*	Up	*	*	*	NT	*	NT	*	*	NT	*	NT	NT	NT	Up
MPGM4/D8	*	Down	*	Down	*	NT	Down	NT	NT	NT	*	*	NT	*	Down	NT	Down	Down
D103	NT	Up	*	Down	NT	Down	NT	NT	*	NT	*	*	NT	NT	NT	NT	NT	Down
D104	Down	Up	*	NT	NT	NT	NT	NT	NT	NT	*	*	Up	NT	NT	Up	NT	Up
MPGM4/D2	NT	Down	*	Down	NT	Up	NT	NT	Up	NT	NT	*	Down	NT	Down	Down	Down	Down
Brine waste p	ond leal	k detection	on bores	•														
MPGM5/D5	Down	Down	Down	Down	Down	Down	Down	Down	Down	NT	NT	NT	Down	Down	Down	Down	Down	Down

Down NT = No statistically significant trend apparent (red text in GWSDAT outputs; Appendix L)

Up = Statistically significant increasing trend (green text in GWSDAT outputs; Appendix L)

Down = Statistically significant decreasing trend (green text in GWSDAT outputs; Appendix L)

NT

NT

NT

NT

NT

www.erm.com Version: Final Project No.: 0553983_MPAR_AEMR_2021_F01

NT

NT

NT

NT

NT

NT

NT

NT

NT

Down

MPGM5/D6

^{- =} GWSDAT trend analysis not conducted

^{*} Insufficient data with concentrations above LOR for GWSDAT trend analysis

x Insufficient data for GWSDAT trend analysis

7.4 Trend Assessment Summary

7.4.1 Surface Water

The statistically significant increasing trends reported during 2019/20 for copper and/or molybdenum in surface water from LMP01 and NC01 were not reported in the current reporting period. The statistically significant increasing trends for boron, nickel, chloride, sulfate, EC and TDS identified in surface water from WX22 were also not reported in the current reporting period.

Although not assessed statistically, visual assessment of pH values at SW_E and WX22 indicate increasing pH values (i.e. less acidic conditions) at these locations.

7.4.2 Groundwater

Statistically significant increasing trends were reported for boron downgradient of the MPAR in groundwater from MPGM4/D1, as well as from D103, D104 and D105.

Within and east of MPAR, groundwater concentration trends were generally stable (no trend) or decreasing, with the only statistically significant increasing trend being for molybdenum at D10. Concentrations of many analytes in groundwater from D10 and D113 reported statistically significant decreasing trends, which may indicate that, immediately downgradient of the MPAR, the concentration of key analytes in groundwater has declined. Although statistical analysis was not completed on pH data, visual analysis indicated increasing pH values in groundwater from some bores.

Analyte concentrations were also generally stable (no trend) or decreasing upgradient of MPAR in the groundwater from background bores, with statistically significant increasing concentrations only reported for selected bores and locations, including chloride at D4 and both chromium and nickel at D3. This is consistent with the location of these bores upgradient of MPAR.

Adjacent to MPAR to the north, EC showed a statistically significant increasing trend at D107, and pH at D106 based on visual analysis.

The majority of statistically significant increasing trends were reported in groundwater from downgradient of MPAR, including multiple increasing trends for selected bores (boron, fluoride, TDS and EC at MPGM4/D1; cadmium, copper and selenium at MPGM4/D9; chloride, nickel and EC at D102; boron, chloride and EC at D105; boron, nickel, zinc and EC at D104). Concentrations were also statistically significant increasing at D103 for boron, and at D2 for copper and lead only. These elevated concentrations and increasing trends are considered to be due to the leaching of these analytes from the BCA placed in the MPAR and subsequent transport of solutes with the regional groundwater. These processes and future management strategies are being further assessed as part of the independent assessment in accordance with contingency measures outlined in the WMP.

Concentrations in groundwater from bore MPGM4/D8, located north of Wangcol Creek, were stable or showed a statistically significant decreasing trend.

Within the mine disturbance areas to the south and south-east of MPAR, concentrations of chloride, chromium, copper, molybdenum, nickel, TDS and/or EC in groundwater from bores D16 and D18 showed some statistically significant increasing trends. Consistent with the 2019/20 report (ERM, 2020a), the presence of preferential flow paths as a result of historical mining disturbance, and other water management activities in the surrounding area are considered to be potential factors contributing to the concentrations trends in groundwater at D16. Stable or statistically significant decreasing trends were reported in groundwater from D15 and D17.

Consistent with the discussion above, statistically significant decreasing trends were noted for many analytes in groundwater from leak detection monitoring bore MPGM5/D5. Trends were stable or decreasing, with the exception of pH, at MPGM5/D6. The improvement of water quality in these bores is consistent with the liner repairs at Brine Waste Pond A undertaken in 2019/20 reporting period.

7.5 Implementation of Contingency and Mitigation Measures

Where increasing trends have been identified, these have been recognised as triggers for action in accordance with the TARPs.

In the case of groundwater to the north-east and hydraulically downgradient of the MPAR, the independent assessment is currently being implemented in line with the contingency measures contained in the WMP to assess the extent to which the MPAR may be contributing to previously reported exceedances, and to identify further contingency measures if necessary. The independent assessment includes a separate and broader investigation of surface water and groundwater conditions in the vicinity of the Ash Repositories. Potential short- and long-term management measures are currently being evaluated as part of the independent assessment.

The statistically significant increasing trends in groundwater at bore D16 are potentially an early warning that operations at the neighbouring coal washery facility (i.e. in areas not controlled or managed by EnergyAustralia) may be influencing the quality of groundwater in the southern extent of the monitoring area.

www.erm.com Version: Final Project No.: 0553983_MPAR_AEMR_2021_F01 Client: EnergyAustralia NSW Pty Ltd 28 September 2021 Page 37

8. CONCLUSIONS

Based on the review of the surface water and groundwater quality data for the Project obtained in accordance with the WMP for the reporting period, it is considered that the objectives of the AEMR have been met and the following conclusions are drawn:

- Concentrations of target analytes in groundwater have been reported above the Environmental Goal for groundwater at monitoring locations within and downgradient of the MPAR. Elevated levels of key analytes including chloride, sulfate, boron and nickel, are considered to be due to the leaching of these analytes from the BCA placed in MPAR and subsequent transport of solutes with the regional groundwater. The impacted groundwater is migrating from the vicinity of the MPAR toward the alignment of Wangcol Creek, as indicated by the groundwater quality results reported to the east at D106 and D107, to the downgradient at MPGM4/D1, MPGM4/D9, D102 and to a lesser extent at D105 and D103. Groundwater quality generally appears to be improving at MPGM4/D2 based on statistical trend assessment (decreasing trends) and concentrations that are more similar to the background conditions;
- Potential interaction of this impacted groundwater with the surface water of Wangcol Creek was identified during the 2019/20 reporting period (ERM, 2020a). However, the surface water quality indicated by monitoring locations to the northeast of MPAR, including midstream at SW_E and downstream at WX22 and SW_G, were generally improved during the current reporting period. The improved surface water quality, as supported by the decreasing trends for TDS, chloride and/or sulfate at these locations, may reflect the higher rainfall during the current reporting period compared to 2019/20;
- Although concentrations in groundwater currently remain below the Environmental Goals, consistent with the 2019/20 monitoring, concentrations of chloride, nickel, EC and TDS increased in groundwater from D16. The presence of preferential flow paths as a result of historical mining disturbance, and other water management activities in the area may be factors in the trends identified in groundwater from bore D16;
- Concentrations of boron, cadmium, chloride, iron, manganese, nickel, selenium, sulfate, zinc, TDS and/or EC in groundwater to the east to MPAR at D10, D11, D19 and D103 indicate decreasing trends. This may indicate that, immediately downgradient of MPAR, the concentration of key analytes in groundwater has declined; and
- Following repair of the liner at the Brine Waste Ponds, groundwater quality is improved at MPGM5/D6 and is continuing to improve (as shown by decreasing trends) at MPGM5/D5.

Results of the groundwater and surface water monitoring program indicate that groundwater quality in the vicinity of the MPAR and the Brine Waste Ponds is influenced by the Project activities. In portions of Wangcol Creek, surface water quality has historically been shown to be affected, primarily through the flow of groundwater into the creek during periods of low rainfall. This is currently subject to review and management as part of the independent assessment.

Where increasing trends have been identified, these have been recognised as triggers for action in accordance with the TARPs. In the case of groundwater, and historically surface water, to the northeast and down hydraulic gradient of MPAR, the independent assessment, including assessment of potential mitigation measures continues. The outcomes of the independent assessment will inform future AEMRs for the Project and will be reflected in revisions to the WMP, while groundwater elevation and quality will continue to be monitored.

Consistent with the 2019/20 monitoring, the statistically significant increasing trends in groundwater at bore D16 are potentially an early warning that operations at the neighbouring coal washery facility (in areas not controlled or managed by EnergyAustralia) may be influencing the quality of groundwater in the southern extent of the monitoring area. This should be assessed further in consultation with the neighbouring land holder as appropriate.

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Consistent with the 2019/20 monitoring, due to bore construction appearing to have been compromised, permanently blocked, or bores repeatedly being dry or inaccessible, it is recommended that monitoring of bores B5, D18, SW3D and D23 be removed from the monitoring program during future revision of the WMP and these bores be decommissioned if damaged.

www.erm.com Version: Final Project No.: 0553983_MPAR_AEMR_2021_F01 Client: EnergyAustralia NSW Pty Ltd 28 September 2021 Page 39

9. REFERENCES

9.1 Project

- Aurecon, 2009. Mt Piper Brine Conditioned Fly Ash Co-Placement Environmental Monitoring Report, Annual Environmental Monitoring Report 2008/09, Revision 2, 10 July 2009.
- Aurecon, 2017. Mt Piper Brine Conditioned Fly Ash Co-Placement Environmental Monitoring Report, Annual Environmental Monitoring Report 2016/17, Revision 3, 25 September 2017.
- Connell Wagner, 2007, Statement of Environmental Effects, Mount Piper Power Station, Extension of Brine Conditions Ash Placement Area. Prepared by Environmental Services, Pacific Power International for Delta Electricity, 21 June 2007.
- Connell Wagner, 2008, Mt Piper Power Station Brine Conditioned Fly ash Co-placement Extension Water Management and Monitoring Plan, Delta Electricity Western, Revision 3, 26 September 2008.
- CDM Smith, 2012. Lamberts North Ash Placement Project: Groundwater Modelling Report, prepared for Delta Electricity, 22 November 2012.
- CDM Smith, 2013, Lamberts North Ash Placement Project Operation Environmental Management Plan (OEMP), Delta Electricity Western May 2013, last revised by EnergyAustralia on 2 September 2019.
- Danis, A., Danis, C., Lackie, M., O'Neil, C., & Twigg, L. (2011) Deep 3D structure of the Sydney Basin using gravity modelling, Australian Journal of Earth Sciences, 58:5, 517-542, DOI: 10.1080/08120099.2011.565802.
- ERM 2020, Water Management and Monitoring Plan Update for 60 ML Dam, Mt Piper Power Station Brine Conditioned Flyash Co-placement Extension Water Management and Monitoring Plan, EnergyAustralia NSW Pty Ltd, Final, 28 February 2020.
- ERM 2020a, Annual Environmental Monitoring Report Water Management and Monitoring, Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project, 29 September 2020.
- Sinclair Knight Mertz (SKM) (2010) Mt Piper Power Station Ash Placement Project, Appendix D, Hydrology and Water Quality, 2010.

9.2 General

- Australian and New Zealand Environment and Conservation Council (ANZECC) (2000) National Water Quality Management Strategy. Paper No. 4. Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1: The Guidelines (Chapter 1-7).
- Australian and New Zealand Governments (ANZG) (2018), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia, available at www.waterquality.gov.au/anz-guidelines
- Shell Global Solutions, 2012: Ground Water Spatio-Temporal Data Analysis (GWSDAT) Tool, Version 2.0. Shell Technology Centre Thornton, UK.
- Western Australia Department of Environment, 2004: Use of Monitored Natural Attenuation for Groundwater Remediation.

10. STATEMENT OF LIMITATIONS

This report is based solely on the scope of work described in our proposal P0533074 dated 20/3/20 and confirmed via email on 24/4/20 (Scope of Work) and performed by Environmental Resources Management Australia Pty Ltd (ERM) for EnergyAustralia NSW Pty Ltd (the Client). The Scope of Work was governed by a contract between ERM and the Client (Contract).

No limitation, qualification or caveat set out below is intended to derogate from the rights and obligations of ERM and the Client under the Contract.

The findings of this report are solely based on, and the information provided in this report is strictly limited to that required by, the Scope of Work. Except to the extent stated otherwise, in preparing this report ERM has not considered any question, nor provides any information, beyond that required by the Scope of Work.

This report was prepared between July 2021 and September 2021 and is based on conditions encountered and information reviewed at the time of preparation. The report does not, and cannot, take into account changes in law, factual circumstances, applicable regulatory instruments or any other future matter. ERM does not, and will not, provide any on-going advice on the impact of any future matters unless it has agreed with the Client to amend the Scope of Work or has entered into a new engagement to provide a further report.

Unless this report expressly states to the contrary, ERM's Scope of Work was limited strictly to identifying typical environmental conditions associated with the subject site(s) and does not evaluate the condition of any structure on the subject site nor any other issues. Although normal standards of professional practice have been applied, the absence of any identified hazardous or toxic materials or any identified impacted soil or groundwater on the site(s) should not be interpreted as a guarantee that such materials or impacts do not exist.

This report is based on one or more site inspections conducted by ERM personnel, the sampling and analyses described in the report, and information provided by the Client or third parties (including regulatory agencies). All conclusions and recommendations made in the report are the professional opinions of the ERM personnel involved. Whilst normal checking of data accuracy was undertaken, except to the extent expressly set out in this report ERM:

- did not, nor was able to, make further enquiries to assess the reliability of the information or independently verify information provided by;
- assumes no responsibility or liability for errors in data obtained from; and
- the Client, any third parties or external sources (including regulatory agencies).

Although the data that has been used in compiling this report is generally based on actual circumstances, if the report refers to hypothetical examples those examples may, or may not, represent actual existing circumstances.

Only the environmental conditions and or potential contaminants specifically referred to in this report have been considered. To the extent permitted by law and except as is specifically stated in this report, ERM makes no warranty or representation about:

- the suitability of the site(s) for any purpose or the permissibility of any use;
- the presence, absence or otherwise of any environmental conditions or contaminants at the site(s) or elsewhere; or
- the presence, absence or otherwise of asbestos, asbestos containing materials or any hazardous materials on the site(s).

Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project

Use of the site for any purpose may require planning and other approvals and, in some cases, environmental regulator and accredited site auditor approvals. ERM offers no opinion as to the likelihood of obtaining any such approvals, or the conditions and obligations which such approvals may impose, which may include the requirement for additional environment works.

The ongoing use of the site or use of the site for a different purpose may require the management of or remediation of site conditions, such as contamination and other conditions, including but not limited to conditions referred to in this report.

This report should be read in full and no excerpts are to be taken as representative of the whole report. To ensure its contextual integrity, the report is not to be copied, distributed or referred to in part only. No responsibility or liability is accepted by ERM for use of any part of this report in any other context.

Except to the extent that ERM has agreed otherwise with the Client in the Scope of Work or the Contract, this report:

- has been prepared and is intended only for the exclusive use of the Client;
- must not to be relied upon or used by any other party;
- has not been prepared nor is intended for the purpose of advertising, sales, promoting or endorsing any Client interests including raising investment capital, recommending investment decisions, or other publicity purposes;
- does not purport to recommend or induce a decision to make (or not make) any purchase, disposal, investment, divestment, financial commitment or otherwise in or in relation to the site(s); and
- does not purport to provide, nor should be construed as, legal advice.

Notes:

Details shown are diagrammatical only.

Source:

Connell and Wagner, 2008. Mt Piper Power Station Brine Conditioned Flyash Co-placement Extension Water Management and Monitoring Plan. Prepared for Delta Electricity, September 2008.

Schematic of External Batter Placement

Drawing No: 0553983m_AEMR_C001_R1.cdr

Date: 16/08/2021 Drawing size: A4

Drawn by: GC/KV Reviewed by: GP Client: Energy Australia

This figure may be based on third party data or data which has not been verified by ERM and it may not be to scale. Unless expressly agreed otherwise, this figure is intended as a guide only and ERM does not warrant its accuracy.

F - 3

Project Approval Document	Consent Requirements	How addressed by this AEMR		
Mt Piper Consent	38 A Notwithstanding the provisions of Condition No. 38, the brine and ash co-placement area may be extended and shall be undertaken generally in accordance with the Statement of Environmental Effects: Mount Piper Power Station Extension of Brine Conditioned Ash Placement Area, prepared by Connell Wagner Pty Ltd and dated June 2007. This includes:	Refer to Appendix C and Section 2 of this report.		
	(i) The extended area must lie within the existing ash placement area;			
	(ii) Co-placement activities in the proposed extended area must use existing facilities and methods;			
	(iii) The placement of brine conditioned ash may only occur between the levels of RL 946 metres (the end-point of the water conditioned ash layer) and RL 980 metres.			
	38 B The groundwater and surface water monitoring programs required by Condition No. 40 and 41 apply to the extension of the brine and ash co-placement area, permitted by Condition 38 A.	Refer to relevant conditions below.		
	38 C The Applicant must update the Water Management Plan (WMP) required by Condition No. 43, and obtain the approval of the Secretary for the update, prior to undertaking any works permitted by Condition No. 38 A. In determining whether to grant approval, the Secretary must consult with the BCD, WaterNSW, DPIE Water, and Council.	Condition is met by the WMP dated 28 February 2020, as outlined in Section 1 and Section 4 to Section 8 of this report.		
	40. The Applicant shall, at least one month prior to the first placement of brine-conditioned flyash, consult with the EPA, DPIE Water and WaterNSW to establish the requirements for Water Monitoring Programs for groundwater and surface water. The Water Monitoring Programs shall:	Condition is met by the WMP dated 28 February 2020, as outlined in Section 1 and Section 4 to Section 8 of this		
	(i) be based on the monitoring programs presented in the Statement of Environmental Effects for this modification;	report.		
	(ii) include water quality testing at a minimum frequency of every three months;			
	(iii) be at the expense of the Applicant.			
	41. The Applicant shall expand the groundwater and surface water monitoring programs, including, if so required, the establishment of additional groundwater monitoring bores and surface water sampling points, in accordance with any reasonable requirements of the EPA, DPIE Water or WaterNSW.	Condition is met by the WMP dated 28 February 2020, as outlined in Section 1 and Section 4 to Section 8 of this report.		

Project Approval Document	Consent Requirements	How addressed by this AEMR		
	 43. At least one month prior to the placement of brine-conditioned flyash, or within such further period as the Secretary may agree, the Applicant shall prepare and submit for the approval of the EPA, WaterNSW, DPIE Water, Council, and the Secretary, a Water Management Plan (WMP) which shall include, but not be limited to: (a) Details of the monitoring programs for surface water and groundwater required under conditions 40 and 41. (b) Details of measures to be employed to control surface water run-off from the site. (c) Contingency plans for the mitigation of environmental impacts should run-off or leachate from the site be found to be negatively impacting on natural surface water or groundwater. (d) Brine management objectives and strategies, with specific reference to measures aimed at reducing the volume of brine produced at the Mount Piper Power Station. 	Condition is met by the WMP dated 28 February 2020, as outlined in Section 1 and Section 4 to Section 8 of this report.		
	43A. The Applicant must update the Water Management Plan required by Condition 43 to the satisfaction of the Secretary, prior to commissioning the storage pond associated with Modification 8. The Applicant must implement the approved Water Management Plan.	Condition is met by the WMP dated 28 February 2020, as outlined in Section 1 and Section 4 to Section 8 of this report.		
	44. The Applicant shall provide to the Secretary, EPA, DPIE Water, WaterNSW and Council, an Environmental Monitoring Report (EMR) on a yearly basis, with the first EMR to be submitted no later than six months after the first placement of brine-conditioned flyash onsite. The Applicant shall agree to Council making the Environmental Monitoring Reports available on request for public inspection.	Condition is met by the development of this report in its entirety.		
	 45. The Environmental Monitoring Report shall include, but not be limited to: (a) a summary and discussion of all available results and analyses from Water Monitoring Programs; (b) a discussion of the aims of the Water Management Plan and to what degree these aims have been attained in the context of results and analyses of the Water Monitoring Programs; (c) actions taken, or intended to be taken, if any, to mitigate any adverse environmental impacts; and to meet the reasonable requirements of the Secretary, EPA, DPIE Water, WaterNSW or Council. 	Refer to Section 4 to Section 8, along with Appendix B to Appendix L of this report.		
The WMP (ERM, 2020)	Section 5.1 – Environmental Goals The results of all surface water and groundwater monitoring are intended to be assessed relative to the Environmental Goals	Refer to Section 5 (surface water) and Section 6 (groundwater), along with Appendix F to Appendix J of this report.		
	Section 5.1.1 – Early Warning Assessment In addition to comparing results with the Environmental Goals for surface water and groundwater an early warning assessment will be conducted. This assessment will include a review of concentration trends through time at each location, including statistical assessment.	Refer to Section 7, along with Appendix H to Appendix L of this report.		
	Section 6.1 – Monitoring Locations	Refer to Section 5.2 and Section 6.2 of this report.		

Project Approval Document	Consent Requirements	How addressed by this AEMR		
	Section 6.2 – Monitoring Frequency	Refer to Section 5.2 and Section 6.2 of this report.		
	Section 6.3 – Monitoring Method	Refer to Section 5.3 and Section 6.3 of this report.		
	Section 6.4 – Monitored Parameters	Refer to Section 5.4 and Section 6.4 of this report.		
	Section 6.5 – Data Management and Assessment The monitoring data is compared with the existing historical dataset for an assessment of trends related to potential influence of the brine management and BCA placement activities on surface water and groundwater.	Refer to Section 5.5, Section 5.6, Section 6.5, Section 6.6 and Section 7 of this report.		
	Section 6.6 – Reporting Requirements The reporting requirements of the WMP form the objectives of this AEMR.	Refer to Section 1.2, Section 5 to Section 8 of this report.		
	Section 7.1 – Performance Criteria The key aim of TARPs is the mitigation and control of impacts, ideally through early detection. Therefore, TARPs for groundwater and surface water quality are based on the Environmental Goals for the monitoring program. In addition, long-term trends in surface and groundwater concentrations are assessed using the routine monitoring data and with reference to a statistical assessment of water quality data. Should concentrations at a given location indicate a statistically significant increasing concentration trend in groundwater or surface water, or exceed the relevant Environmental Goal, the triggers are considered to have been exceeded and actions are to be implemented.	Refer to Section 7.5 of this report.		
	Section 7.2 – Incident Response An impact to groundwater or surface water is considered to be present when concentrations of a monitoring parameter are recorded above the Environmental Goals. In the event of an impact to groundwater or surface water that is considered to be potentially associated with brine management and/or handling/placement of BCA at MPAR, the WMP outlines an incident response procedure. It is noted that the EPL 13007 outlines separate incident response requirements. The reporting requirements of the EPL will be provided to the regulators separately to this AEMR.			
	Section 7.3 – Contingency Measures Should routine monitoring data suggest that further changes in water quality are being caused by brine management (e.g. brine waste ponds) or other BCA placement and related activities at the MPPS, the WMP outlines contingency items that may be implemented.	Refer to Section 7.5 of this report.		

Mt Piper Power Station - LDP12 (formerly LDP01) discharge volumes

Date	Kilolitres / day	Start Pump (hh.mm)	Cease Pumping (hh.mm)
29/07/2020	3000	11.00	23.59
30/07/2020	4000	12.01	23.59
31/07/2020	4000	12.01	23.59
1/08/2020	3000	12.01	11.00
12/08/2020	3000	12.00	23.59
13/08/2020	4000	12.01	23.59
14/08/2020	4000	12.01	18.00
18/08/2020	3000	12.00	23.59
19/08/2020	4000	12.01	23.59
20/08/2020	2000	12.01	8.00
26/08/2020	2000	0.75	23.59
27/08/2020	2000	12.01	8.00
22/09/2020	1000	11.30	24.00
23/09/2020	3000	12.01	24.00
24/09/2020	3000	12.01	24
25/09/2020	1000	12.01	8
18/12/2020	2500	11	21
19/12/2020	3000	8	16
20/12/2020	3000	8	16
21/12/2020	3000	8	18
11/01/2021	3000	1600	2400
12/01/2021	4000	12.01	2400
13/01/2021	2000	9	17
14/01/2021	1000	1200	1700
15/01/2021	500	14	1700
11/02/2021	2000	1300	2400
12/02/2021	3000	12	1700
9/03/2021	2000	1400	2400
10/03/2021	2000	12.01	1700
TOTAL	77000	-	-

APPENDIX D BRINE COMPOSITION DATA

Brine Composition Average Data

Parameter	Values from 1999 SEE Average ^b	2003 – 2006 Average ^b	July 2017 - Dec 2017 Average ^a	July 2019 – June 2020 Average ^c	July 2020 – June 2021 Average ^d
		mg/L (ex	cept pH)		
рН	7.9	8.1	7.9	9.3	8.75
Cond (us/cm)	63,664	127,982	88,556	61,320	73,196
TDS	116,650	137,170	118,500	64,257	89,948
Alk (CaCO3)	1,360	1,346	976	14,735	6,067
Cl	19,864	23,889	10,390	7,776	8,270
SO4	49,670	66,767	67,378	28,302	47,395
Na	25,678	30,103	37,400	23,475	28,694
K	4,258	7,362	3,460	1,721	2,518
Ca	645	606	780	696	458
Mg	5,480	9,010	4,010	1,540	2,541
		uç	J/L		
As	409^^^	143	438	522	199
Ag	1.4^^	<50	10	<1	<1
Ва	272*	30	1,000	6.43	116
Ве	17^	5.8	-	<10	<10
В	73,560*	115,000	35,800	41,500	9,570
Cd	19+	42	5.3	2.3	3.58
Cr ***	49+	<50	1,050	50	40.4
Cu	7,858*	7,197	12,400	5,991	4,626
F	21,178*	125,656	64,650	55,404	72,630
Fe	833*	-	1,580	151	340
Hg	1.35^^	-	0.04	0.11	0.23
Mn	17,530*	34,000	7,210	5,170	231
Мо	2,600^^	-	-	2,625	2,490
Ni	4,187*	4,017	3,880	348	1,570
Pb	6^^	-	10	<10	11.6
Se	245*	-	130	115	114
Zn	2,020*	-	1,050	2,180	1,373

a. Brine composition data provided by EnergyAustralia on 01 August 2018;

b. Connell Wagner (2007). Statement of Environmental Effects, Mount Piper Power Station, Extension of Brine Conditions Ash Placement Area. Prepared by Environmental Services, Pacific Power International for Delta Electricity, 21 June 2007.

c. data based on Nalco monitoring point reference 1050, EA BC Waste Pond Notations relate to Average Trace element values, from 1999 Statement of Environmental Effects including:

^{*} mostly 10 - 15 analyses (sources Hodgson, 1999) - AWT, 1996

^{**} EPA (1999a) ^ one analysis ^^ 3 analyses ^^^ 5 analyses + 6 analyses

^{***} Total chromium reported (CrVI <25ug/l)

d. Brine composition data provided by EnergyAustralia on July 2021 – combined data of BC Waste Pond A & B.

Month		Jul-20			Aug-20			Sep-20			Oct-20			Nov-20			Dec-20	
Measurement	Min	Max	Rain	Min	Max	Rain	Min	Max	Rain									
Date	°C	°C	mm	°C	°C	mm	°C	°C	mm									
1	1	13	0	-2.0	14.0	0.0	1.0	14.0	0.0	3.0	15.0	2.6	6.0	16.0	0.0	13.0	35.0	3.3
2	6	14	0	-4.0	16.0	0.0	-1.0	17.0	0.0	1.0	21.0	0.0	7.0	18.0	0.0	13.0	26.0	0.2
3	1	9	0	5.0	14.0	0.0	6.0	21.0	0.0	3.0	24.0	0.0	6.0	22.0	0.0	14.0	25.0	0.0
4	2	7	0.1	0.0	13.0	0.0	10.0	15.0	0.4	6.0	24.0	0.0	5.0	25.0	0.0	12.0	28.0	0.0
5	-2	8	0.0	-1.0	7.0	0.0	1.0	14.0	0.0	10.0	25.0	0.0	8.0	17.0	1.5	7.0	23.0	14.4
6	-3	13	0.0	0.0	11.0	0.0	1.0	14.0	0.0	9.0	22.0	0.0	6.0	18.0	0.0	10.0	20.0	0.2
7	-2	12	0.0	4.0	7.0	1.7	5.0	19.0	0.0	13.0	18.0	0.2	4.0	19.0	0.0	8.0	20.0	0.0
8	3	10	0.0	4.0	10.0	0.0	2.0	20.0	0.0	9.0	16.0	2.2	7.0	17.0	0.0	6.0	17.0	0.0
9	4	12	0.0	2.0	7.0	0.5	6.0	12.0	1.6	7.0	13.0	0.0	7.0	19.0	0.0	4.0	25.0	0.0
10	1	11	0.2	5.0	9.0	1.0	6.0	10.0	0.0	4.0	17.0	0.0	4.0	23.0	0.0	9.0	25.0	0.0
11	4	11	0.7	3.0	11.0	0.0	4.0	14.0	0.0	2.0	19.0	0.0	7.0	25.0	0.0	10.0	14.0	0.0
12	1	9	0.2	4.0	13.0	0.1	4.0	17.0	0.0	6.0	20.0	0.0	11.0	23.0	0.3	10.0	16.0	0.0
13	-1	9	0.3	3.0	14.0	0.4	4.0	16.0	0.0	4.0	23.0	0.0	8.0	18.0	1.2	11.0	19.0	0.2
14	1	10	0.0	1.0	12.0	1.6	3.0	19.0	0.0	6.0	21.0	0.0	7.0	20.0	0.0	13.0	21.0	0.2
15	2	10	0.0	7.0	9.0	0.1	5.0	19.0	0.0	11.0	23.0	0.0	6.0	28.0	0.0	14.0	22.0	2.4
16	0	10	0.0	6.0	8.0	0.0	5.0	19.0	0.0	10.0	20.0	0.0	10.0	29.0	0.0	17.0	25.0	8.1
17	-1	11	0.0	4.0	9.0	0.0	7.0	22.0	0.0	11.0	24.0	2.8	10.0	25.0	0.0	17.0	27.0	0.6
18	-1	11	0.0	4.0	12.0	0.0	9.0	14.0	0.0	10.0	18.0	0.2	13.0	22.0	0.0	13.0	24.0	4.4
19	-2	11	0.0	3.0	11.0	0.7	12.0	18.0	0.0	9.0	19.0	0.0	7.0	28.0	0.0	15.0	16.0	0.0
20	3	10	0.0	4.0	7.0	0.2	10.0	15.0	1.7	10.0	19.0	0.0	13.0	31.0	0.0	13.0	21.0	0.0
21	-2	12	0.0	3.0	8.0	0.5	11.0	22.0	0.0	7.0	21.0	1.6	11.0	31.0	0.0	13.0	18.0	21.0
22	-3	13	0.0	0.0	4.0	1.1	6.0	17.0	0.0	12.0	22.0	0.4	13.0	28.0	0.0	11.0	19.0	3.2
23	-3	14	0.0	1.0	5.0	0.2	3.0	13.0	0.0	9.0	25.0	6.9	11.0	21.0	1.5	10.0	21.0	0.0
24	-4	14	0.0	-2.0	8.0	0.0	4.0	11.0	0.0	12.0	17.0	34.1	9.0	22.0	0.0	12.0	23.0	0.0
25	3	14	0.1	-4.0	9.0	0.0	1.0	12.0	0.6	8.0	12.0	12.2	11.0	23.0	0.0	13.0	19.0	0.0
26	8	9	2.4	-5.0	13.0	0.0	1.0	6.0	0.0	7.0	11.0	5.4	10.0	28.0	0.0	13.0	21.0	0.0
27	6	10	1.3	-4.0	13.0	0.0	2.0	11.0	0.0	7.0	13.0	0.2	14.0	30.0	0.0	11.0	27.0	0.0
28	6	13	0.4	0.0	12.0	0.0	-2.0	14.0	0.0	7.0	17.0	1.0	15.0	33.0	0.1	14.0	27.0	3.0
29	3	13	0.0	-3.0	18.0	0.0	2.0	15.0	0.0	7.0	18.0	2.4	14.0	30.0	0.4	14.0	17.0	24.6
30	1	14	0.0	-1.0	17.0	0.0	4.0	12.0	0.2	5.0	18.0	1.4	12.0	19.0	0.0	13.0	18.0	0.8
31	0	13	0.0	3.0	14.0	0.0				6.0	17.0	0.2				13.0	20.0	0.0
Min	-4	7	0	-5	4	0	-2	6	0	1	11	0	4	16	0	4	14	0
Max	8	14	2.4	7	18	1.7	12	22	1.7	13	25	34.1	15	33	1.5	17	35	24.6
Average	1.03	11.29		1.29	10.81		4.40	15.40		7.45	19.10		9.07	23.60		11.81	21.90	
Total			5.70			8.10			4.50			73.80			5.00			86.60

Environmental Resources Management Pty Ltd 1 of 2

Month		Jan-21			Feb-21			Mar-21			Apr-21			May-21			Jun-21	
Measurement	Min	Max	Rain	Min	Max	Rain	Min	Max	Rain	Min	Max	Rain	Min	Max	Rain	Min	Max	Rain
Date	°C	°C	mm	°C	°C	mm	°C	°C	mm	°C	°C	mm	°C	°C	mm	°C	°C	mm
1	11.0	13.0	10.2	14	26	26.8	12	28	0	4	21	0	6	19	0.2	-1	13	0
2	11.0	17.0	0.2	12	23	5.2	8	24	0	8	23	0	6	19	2.7	0	16	0
3	15.0	22.0	8.7	10	22	0	12	20	0	6	24	0	5	20	0.6	5	10	18.7
4	14.0	22.0	40.8	12	25	2.4	10	23	0	8	27	0	9	11	9	4	10	1.4
5	11.0	25.0	0.2	14	27	0.2	13	24	0	8	25	0	9	12	0.4	-2	11	0.4
6	12.0	22.0	2.6	12	20	5.7	12	22	0	12	21	0	11	16	4.6	0	13	0
7	11.0	18.0	1.2	10	25	0.2	13	24	0	13	19	0	9	17	1.2	-3	14	0.2
8	10.0	15.0	0.0	15	21	0	13	25	1.4	12	21	0	7	18	0	3	13	3
9	10.0	20.0	0.2	13	18	0.2	10	26	0	9	22	0	9	16	0.8	-1	4	1
10	7.0	24.0	0.0	9	21	0	14	25	0	6	15	0	5	16	0.2	0	2	10.4
11	9.0	26.0	0.2	13	26	0	16	23	25	5	9	0	7	13	1.6	1	6	0
12	9.0	30.0	0.0	12	26	9.6	15	21	18.8	-1	16	0	7	15	0	4	9	0
13	13.0	28.0	0.0	13	21	9	13	25	1.2	-1	18	0	6	15	0	-2	8	0
14	14.0	30.0	0.0	11	19	0.2	9	17	18.6	5	19	0	7	11	0	-3	12	0
15	10.0	27.0	0.0	11	19	0	8	19	0	8	18	0	2	7	0	0	12	0.2
16	8.0	21.0	0.0	14	21	1.6	10	16	1.2	8	18	0	-4	10	0	-2	15	7.8
17	7.0	25.0	0.0	13	18	2	11	15	2	7	14	0.4	-1	11	0	1	7	1.6
18	10.0	28.0	0.0	12	18	0	13	18	1.4	3	17	0.4	-2	13	0	5	9	0
19	9.0	24.0	0.0	14	22	0.2	13	17	2.4	0	17	0	-3	14	0	5	11	0
20	12.0	19.0	0.0	14	26	0	14	17	7.4	2	15	0	-2	16	0	6	10	0
21	8.0	27.0	0.0	13	27	0	12	16	19.8	1	15	0	-1	13	0	2	11	0
22	12.0	29.0	0.0	11	27	0	13	14	40.8	-1	11	0	1	16	0.2	1	12	0
23	13.0	31.0	0.0	11	18	0.2	14	18	25	1	14	0	-1	16	0.2	4	12	0
24	15.0	33.0	15.6	11	16	0.6	13	18	0.2	0	16	0	7	13	0	9	10	10.6
25	17.0	33.0	0.0	11	21	11.9	10	19	0	1	18	0.2	4	15	0.2	3	10	0.2
26	15.0	30.0	0.0	11	25	0.4	6	19	0.2	0	18	0	6	13	0	4	8	0.2
27	15.0	22.0	0.0	16	24	8.0	6	19	0	1	18	0	3	11	0	0	10	0
28	14.0	18.0	0.0	12	27	0.2	7	19	0	5	18	0	-1	11	0	-2	10	0
29	13.0	19.0	0.2				6	21	0	4	18	0	-2	11	0	6	11	0.2
30	15.0	25.0	20.6				7	20	0	1	18	0	-2	11	0	6	12	0.4
31	13.0	21.0	0.4				4	20	0				-4	15	0.2			
													_					
Min	7	13	0	9	16	0	4	14	0	-1	9	0	-4	7	0	-3	2	(
Max	17	33	40.8	16	27	26.8	16		40.8	13	27	0.4	11	20	9	9	16	18.7
Average	11.71	24.00		12.29	22.46		10.87	20.39		4.50	18.10		3.32	14.00		1.77	10.37	
Total			101.10			77.40			165.40			1.00			22.10			56.30

Environmental Resources Management Pty Ltd 2 of 2

			Field Parame	eters	TDS	+						Anior	s / Cations	1	1 1		1	1 1	-		Nutrients		_	-		1 1	1 1			т т			N	1etals									$\overline{}$	_
			Sectrical Conductivity (Field)	par (r reid)	rotal Dissolved Solids (TDS)	Carbon ate (as CaCO3)	Total Alkalinity (as CaCO3)	rbonate Alkalinity (as CaCO3)	arbonate Alkalinity (as CaCO3)	nolphthalein Alkalinity (CaCO3)	Calcium (Filtered)	Chloride	Magnesium	Fluoride	Fluoride (Filtered.)	Potas si um Potas sium (Filtered)	Sodium	Sodium (Filtered)	Sulfate (as SO4) Nifrate	Nitrite (as NO2-)	Nitrite (as N)	Nitrogen (N) - Kjeldahi Nitrogen (N)	Phosphorus	Aluminium	Aluminium (Filtered) Arsenic	Arsenic (Filtered)	Barlum (Filtered)	Boron	Boron (Filtered) Cadmium	Cadmiu m (Filtered)	Chromium Chromium (Filtered)	Copper	lron	Iron (Filter ed)	Lead (Filtered)	Manganese	Manganese (Filtered)	Mercury	Molybdenum Molybdenum (Filtered)	Mckel	Nickel (Filtered) Selenium	Selen ium (Filtered)	Silver	Silver (Filtered)
			-		. -			8	<u> </u>	₹																																		
10) or Lo	ocal Guidelines - S	Surface Water	uS/cm pH 2200 6.5		mg/L mg/L	_ mg/L	. mg/L	mg/L	mg/L	mg/L mg	/L mg/L	mg/L 350	mg/L m		mg/L 1.5	mg/L mg/l	L mg/L		mg/L μg	yL μgL	mgL	mg/L mg/	L mg/L	μgL						L μg/L 5 0.85												g/L μg/L 5 5		
50) 01 20																																												
	LDP01	Sampled_Date-Time 29/07/2020	492 7.		- 4.6		-	-	-	- 15	5 13.4	-	8.88 8.	18 -	-	5.82 5.33	74.8	70.5			-		-	140	<10 <1	<1 1	4 13	- <50	<50 0.4	0.4	<1 -	2 <	1 66	2	<1 <	1 307	307	<0.04	5 -	33	33 5	5 5.4	<1	_
	LDP01	12/08/2020 13/08/2020	454 7. 467 7.	.47 .55	- 8 - 9.4		+ -	-	-		-	-	-		-		-	-			-		+ -	 : 										-		-	-	-					++	-
	LDP01	18/08/2020	476 7.	.66	- 4.4		-	-	-		-	-	-		-								-	1 .		-				-		-	-	-		-	-	-		-				Ξ
	LDP01 LDP01	19/08/2020 22/09/2020		.41	- 2		+ -	-	-		-		-		-		-	-			-		+ -	+ : +						+ -				-		-	-	-				+-	++	-
	LDP01	18/12/2020	406 7.	.49	- 6.333	3 -	-	-	-		-	-	-		-		-	-			-		-	1 .		-				-		-	-	-		-	-	-		-				Ξ
	LDP01 LDP01	21/12/2020 11/01/2021		.64 .78	- 3.4 - 15.33		+ -	-	-		-	12.7	-	- 0.123 - 0.08	-		-	-	152 - 78.7 -		-		+ -	+ : +						+ -				-		-	-	-				+-	++	-
	LDP01	12/01/2021	317 7.	.89	- 6.4			-	-		-	-	-		-						-		-	1.		-				-		-	-	-			-	-		-			-	Ξ
	LDP01 LDP01	11/02/2021 9/03/2021		.68	- 10.6 252 6.4	$\overline{}$	+ :	-		-	2 7.6 9 11		3.81 3. 4.59 4.	56 - 77 -	-	4.67 3.72 7.54 7.76					-		+ :	920	-	<1 1	1 10	- <50 - <50	<50 <0. 60 0.1	1 <0.1	<1 - <1 -	<1 <	1 70		ব ব ব ব	1 38	-	<0.04	3 -	2 2	2 <1	0 <10	<1	-
	LDP01	Min.	307 7.	.07	- 2		·	-		- 8.2	2 7.6	10.3	3.81 3.	56 0.08		4.67 3.72	48.5	45.9	78.7	- 1				140	<10 <1	ব 1	1 10	- <50	<50 <0.	1 <0.1	<1 -	<1 <	1 66	2	ব ব	1 38	41	<0.04	3 -	2				Ξ
	LDP01	Max. Average	492 7. 424	.97	- 15.33 - 7.3		+ :-	-		- 15 - 11	1 11		8.88 8. 5.8 5		+ : -	7.54 7.76 6 5.6			152 -		:		+ :		60 <1 28 0.5	0.5 1		_	60 0.4 37 0.1	0.4	<1 - 0.5 -	1 0		<50 17	<1 <1 0.5 0.5			<0.04	5 -	33 12		10 <10	<1 0.5	÷
	LDP01_CSP	6/07/2020	595 7.	.75		1	1	-	-	- -	47.4	9.77	-	0.144			~		231 27	70 10		- 0.6	<0.01	1		1	-			1			1			-	<u> </u>	-		-	- -			=
	LDP01_CSP LDP01_CSP	13/07/2020 15/07/2020		.12	- 6.6	+ :	+ :	-			-	8.81	-	0.111	:		-	+ : -	210 -				1 -	1:1	1 1	+++	+ +	- -		+ - +			+ -	++		+ -	:	-		+ : +		+-	+++	-
	LDP01_CSP	20/07/2020	584 7.	.84		1 -	·	-	-		-	7.3	-	- 0.088			-		191 -	- -			-	1:1		1:1		- -		1:		-				-		-		1 - 1		1		-
	LDP01_CSP LDP01_CSP	27/07/2020 28/07/2020	517 7 481 7.	.6	- 23.2	+ -	+ :	-			-	6.51	-	0.108	-		-	+ :	180 -	+ -			+ -	1:1		+ + +		- -		+ - +					- -	+ -	-	-		+ : +		+-	+++	-
	LDP01_CSP	3/08/2020	564 6.	.88		1	·	-	-	- 16	38.4	7.54	9.42	- 0.107	-	5.73 -	81.5	·		90 20		- 0.5	<0.01	100	<10 <1	<1 1	4 -	<1 50	60 0.6	-	<1 -	4 <	1 57	<2	<1 -	379	365	<0.04	6 -	46	38 5.5	5 -	<1	-
	LDP01_CSP LDP01_CSP	10/08/2020 17/08/2020		.89		+ :	-	-	-		-	5.12 6.21		0.122	-		-	-	135 - 164 -		-		-	 : 		1 - 1				+ -				-		+ :	-	-				++	-	-
	LDP01_CSP	24/08/2020	516 9.	.97	- 18		-	-	-		-	7.76	-	- 0.108	-		-	-	207 -				-	1						-		-	-	-		-	-	-		-				Ξ
	LDP01_CSP LDP01_CSP	31/08/2020 7/09/2020	617 6. 754 4.		- 14.5 - 10.4	_	+ -	-			-	10.7		0.121	-		-	-	300 -		-		-	 : 		+ - +				+ - +				-		-	-	-				++	-	÷
	LDP01_CSP	14/09/2020	594 7	.3	- 8		-	-	-		-	-	-		-		-	-					-	1						-		-	-	-		-	-	-		-				Ξ
	LDP01_CSP LDP01_CSP	18/09/2020 21/09/2020	575	7	- 2.4	+ :	+ :	-	-		-	11.7	-	- 0.091	-		-	:	177		-		+ -	 : 		+ -								-		-	-	-				++	+++	-
	LDP01_CSP	28/09/2020		.93	- 11.8		1	-			-	16.7		- 0.087	-		1	-	282 -				-							1 - 1			-	-		-	-	•		-				Ξ
	LDP01_CSP LDP01_CSP	6/10/2020 12/10/2020		.34	- 34.8 - 1	_	-	-	-	- 25.	5 55.7	28.1 13.5	16	- 0.157 - 0.113		5.78 -	- 65	-	264 34 216 -	40 <10	-	- 0.7	<0.01	330		- 1 2	4 -	<1 <50	<50 1.9	-		7 -	1 494	-		810	729	-	2 -	- 85	70 3.5		- 1	÷
	LDP01_CSP	19/10/2020		.07	- 2.8			-	-			18.5	-	0.135			-		284 -				·	· .		1 -				-			-			-	-						-	-
	LDP01_CSP LDP01_CSP	26/10/2020 2/11/2020	419 7 420 7.	.03	- 36.4 - 3.6		+ :	-	-		9 44.7	6.34 8.76		3 <0.05 1.3 0.056		5.23 8.88 5.33 5.58				20 <10	-	- 0.4	<0.01	300	_	<1 2		<1 <50	<50 1.1	1.8	<1 -	<1 <	1 21	6 <2	1 4	1 541	-	<0.04	3 -		92 4.1 58 3.7			-
	LDP01_CSP	9/11/2020 23/11/2020	425 7.	.51	- 2.66	7 -	-	-	-		-	7.24	-	- 0.067	-		-	-	313 -		-		-	-										-		-	-	-		-		-	-	-
	LDP01_CSP LDP01_CSP	30/11/2020	444 7.	21	- 7.6	-	1 -	-	-		-	5.72	-	- 0.067	-		1 -		199 -		-		1 -	<u> </u>		+ -				-		-		-		-	-	-		-		+++	-	-
	LDP01_CSP LDP01_CSP	7/12/2020 14/12/2020	399 7. 412 7.	.78 94	- 26.5 - 9	$\overline{}$	+ :	-	-	- 27.	4 50.4	4.6 4.68	14	- 0.063 - 0.109		7.42 -	52.2	:	146 42 118 -	20 10	-	- 0.7	<0.02	320	20 <1	<1 1	8 -	<1 <50	<50 0.7		<1 -	1 <	1 500	<50	1 -	418	409	-	2 -	31	24 <1	0 -	<1	_
	LDP01_CSP	4/01/2021	329 8.	.05	- 19.5	-				- 12	.1 29		5.34	- 0.085		4.04 -	36.4		93.2 34	40 <10	-	- 0.9	0.06	1230	20 <1	<1 1	3 -	<1 <50	<50 0.2		<1 -	2 <	1 610	<50	2 -	222	191	-	4 -	12	9 <1	.0 -	<1	=
	LDP01_CSP LDP01_CSP	6/01/2021 7/01/2021	277 7.	.06	- 42.5	-	+ :	-	-		-	-	-		-		-	-	- -	· ·	-		+ -	 : 								-		-	- -	-	-	-					+ +	_
	LDP01_CSP	18/01/2021	643 8.		- 2335		-	-	- 1		-	24.6	-	- 0.108			-	-	185 -		-		-	1 .		1-1		- -		1 - 1		-		-		-	-	-		-			-	-
	LDP01_CSP LDP01_CSP	25/01/2021 1/02/2021	760 7. 411 8.	63	- 117.2		+ :	-	-	- 16	6 36.2	21.2 8.57	6.57	- 0.117 - 0.302		6.6	52.4		255 - 128 43		-	- 16	0.12	3890	10 2	- 1 3	6 -	<1 <50	<50 02		3 -	5 <	1 2630	<50	11 -	186	103	-	5 -	12	4 <1	10 -	- <1	_
	LDP01_CSP	8/02/2021	327 8.	.19	- 666	_	-	-	-			9.22	-	- 0.288			-	-	82.2				-	· ·						-			-	-		-	-	-		-				_
	LDP01_CSP LDP01_CSP	9/02/2021 15/02/2021		.82 .29	- 10 - 346	_	+ :	-			-	14.3	-	- 0.207	-		-		95		-		+ :	 		+ - +				+ - +				-		+ :	-	-		+ -		+-	++	-
	LDP01_CSP	22/02/2021	429 8.	.71	- 25.4	-	·	-	-		-	29	-	0.103	-		-	_	110 -		-		-			1-1-				-		-	-	-	- -	-	-	-		-		-	-	Ξ
	LDP01_CSP LDP01_CSP	1/03/2021 8/03/2021	442 8. 217 8.		- 56 - 10.2		+ -	76.38	76.38	0 10.	b 25.5	25.5 31.1		- 0.164 - 0.194		6.52 -	69.1		101 48 119 -	30 <10	:	- 0.7	0.03	990	10 <1	<1 1	8 - I	<1 <50	<0 0.		<1 -	<1 <	500	<50	2 -	79	50	-	4 -	- 4	2 <1	J -	<1	-
	LDP01_CSP	15/03/2021	306 8.	21	- 875	-	1 -	-	-			25.44	-		0.216			1 - 1	89.22 -	1 -	-	- -	1 -	1 :		1 - 1				1:				-		-	·	-	- -	1:1		-	-	Ξ
	LDP01_CSP LDP01_CSP	18/03/2021 19/03/2021	384 7. 377 7.		- 24 - 25.6		-	-	-	- 8.1	7.65	-	s.11 3.		:	5.98 5.44	60.9	57.4			-		+ :	6/40	- <1	<1 1	3 11	- <50	<00 <0.	- 40.1	<1 -		1 150	<50		- 62	- 58	<0.04	2 -	3	3 <1	J <10	<1	-
	LDP01_CSP	22/03/2021	353 8.	.02	- 30.8		ļ ·	-	-	- -	-	35.22	-	. .	0.142		-	·	66.34 -	. -	-	- -	-	1 - 1	- -	1-1	- -		- -	1 - 1		-	-	-	- -	-	·	•		1 - 1		1		Ξ
	LDP01_CSP LDP01_CSP	23/03/2021 25/03/2021	366 7.	_	- 70 - 43		<u> </u>	-	<u> </u>		1		-		-		1				-		1 -	 		1				<u> </u>			1	 		1:	<u> </u>			1:+		1		_
	LDP01_CSP	29/03/2021	436 8. 620 8.		- 3		1 -	129.6	129.6		6 272	42.07 38.4	-	0.115	0.119	8.55	99.8	-	61.7 - 117 35	50 <10	-	- 0.8	0.03	1840		-	3 -					- 1	1 698		2 -	112	- 66	-	4 -	- 4		-	-	Ξ
	LDP01_CSP LDP01_CSP	6/04/2021 12/04/2021	667 8.	.37	- 8.2	$\overline{}$	+ -	123.0	- 123.0	- 11.	- 212	65.21	-	U.113	0.181		39.5	-	140.5 -	~ <1U		- 0.8	0.03	- 1040	- <1	- 1 2		- 30	- «U.				. 098	-		- 112	-	-		-			- 1	=
	LDP01_CSP LDP01_CSP	19/04/2021 26/04/2021	699 8. 756 8.		- 14.8 - 18	$\overline{}$	-	1	-		-	37.12 42.64	-		0.224		-	-	168.6 - 183.2 -	1	-		+-	1:1	· -	+:-	+	- -		+:-		-	-	H.T		1	-	-:		+ -	<u> </u>		$+$ \mp	
	LDP01_CSP	3/05/2021	793 8.	.49	- 3.66	7 -	1	177.9	177.9	0 10.	8 26.7	42.8	5.99	0.262	-	9.46 -	134		195 42	20 <10	-	- 0.8	<0.01	410	<10 <1	<1 1	9 -	<1 <50	<50 <0.		<1 -	<1 <	1 155	18	<1 -	66	44	-	10 -	4	3 <1	0 -	<1	Ė
	LDP01_CSP LDP01_CSP	10/05/2021 17/05/2021	712 8. 700 8		- 60 - 158	$\overline{}$	+ -	1 -			-	30.1 50.16	- -		0.285 0.26		-		184.6 - 214.2 -	+ :	-	- -	1 -	1:		1:1		- -		+	- -	- -	+ -	: -	- -	+ -	<u> </u>	-:		1:	- -	+-7	++-	-
	LDP01_CSP	24/05/2021	705 8.	.72	0.4	·	-	-	-	- -	-	-	-		0.287		1 -	-	145.5 -	. -	-		1 -	1 -	- -	1.		- -	- -	1 - 1	- -	-	-	-	- -	1 -	-	-		-			<u> </u>	Ξ
	LDP01_CSP LDP01_CSP	+	695 8. 592 8.		- 18 - 228	_	-	119.3	119.3	0 11	9 25	40.13 31.3	4.81	0.192	0.3	9.71	103	-	157.6 - 136 41	10 <10	-	- 3.3	0.29	4650	10 2	4	3 -	<1 <50	 <50 0.2		2 -	5 <	1 4170	- <50	15 -	183	- 67	-	10 -	- 12	3 <1	10 -	<1	-
	LDP01_CSP	15/06/2021	558 8.	.35	- 91.67	7 -	-	-				25.08	-		0.198	_	1 -	-	149.6 -	- -	-			1 -					- -	1 - 1			-	-		-	-	-		-			<u> </u>	Ξ
	LDP01_CSP LDP01_CSP	21/06/2021 28/06/2021	540 8. 521 8.		- 246 - 160	_	-	-			-	32.1 20.06	-		0.203		-		158.2 - 136.6 -				-	1:		+ + +				+ - +				-		-	-	-				+-	+++	-
	LDP01_CSP	Min.	217 4.	.82	0.4	-						4.6			0.119			48.2	61.7 27																									
	LDP01_CSP LDP01_CSP		793 9. 518	$\overline{}$	- 2335 - 132										0.3																													
		ample when not discharg																																										

			Field Parame	ters	TDS	Т						A	inions / Cations									Nutrients	i		Т										M	etals												\neg
			Tield I di dille	ters				Т												\top					\top											Ctuis										\prod	\top	╛
			Field)		(TDS)	ଚ	(S)	(saco3)	CaCO 3)	(CaCO3)				6									z			<u> </u>													e			g						
			uctivity (Solids d Solids	ns CaCO	/ (as Ca)	nity (as (inity (as	Ikalinity	§	Filter ed)	e n	(rittere	Filtered)	, s	(Filtered	g	illered)	Ē .	s NO2-)	<u>2</u>	- Kjelda	Sn.or	E I	(Filtered	-iltered)	m (iltered)		iltered)	<u>5</u>	Filtered	ium (Filtered	oer ilhered)	_	ter ed)	tered)	98 90	Filtered	ri,	m e) (Filtere	iltered)	ium Filtered	b	(ltered)	٥	(tered)
			al Condi		spende	on ate (Vikalinit	e Alkali	te Alkal	halein A	G	Chlor	Magne	Fluor	noride (Potas	was sinm	Sodi	So dium (Filhere		litrite (a	Nitrito	(N)	Phosp	Alumi	minium	rsenic (I	Bari arium (F	Beryll	Bord loron (F	Ga dh	dminm	Chron	Copi opper (f	2	Iron (Fil	ead (Filte	Manga	iganese	Mero	Molybd	bd enun	lickel (F	Selen len ium (Silv	Silver (F	ďZ	Zinc (Fi
			Electric		Total D	ş	Total /	arbonat	carbonz	en olpht		3		ğ	-		2		ø °	°			ž			₹				"		2	ē	°			-		Mar			Woly		8				
								"	- E	£																																						
ANZECC (2000) I		- Confess Water	uS/cm pH u 2200 6.5			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L r	ng/L mg/L	mg/L n		L mg/L		mg/L	mg/L i		gL μg	l μgl	mglL	mg/L n	gL mgL	μgL									μg/L μg/L 3.5 3.5								μg/L μg/L			L µg/L	μg/L	μg/L μ	ig/L
ANZECC (2000) or L				0 1	300							3.00		1.0	1.3				10							24	24	700 70	0 100	310 310	0.00	0.03	2 2	3.3 3.3	300	300	3 3	1300	1300	0.00	10	10 17	17	3 3	0.00	0.03	110	110
Purpose Upstream	LocCode LMP01	Sampled_Date-Time 6/07/2020	380 7:	5	- 4	T -	Ι.	1 -	Ι.	-	-	- 12	T - T		1 -	1 -	-	-	- 10	00 -		-	-		1 - 1		1.		1.1		-	-					. .	1 - 1	- 1	-	-		1.1		1 -	T - T		-
Upstream	LMP01 LMP01	13/07/2020	362 7.7 360 8	9	- 12		-	1	-	1	-	- 14 - 14			-	-	-	-	- 94	4.5 -		-	-		1		-		1.		-	-			-	-		-	-	-	1		-		-	\Box		=
Upstream Upstream	LMP01	20/07/2020 23/07/2020	371 7.3	8 2	216 7	1	73	1	73	<1	28.8		14.7	- 0.11	12 -	6.71		34.7	- 81	_	0 <10	-	0.3	.3 0.01	120	10 <1	1	19 -	<1	100 -	0.4	-	<1 -	5 3	292	26 <	d -	120	10	<0.04	23	- 4		0.5 -	<1	\pm	17	10
Upstream Upstream	LMP01 LMP01	27/07/2020 3/08/2020	240 9. 450 8		- 54 - 9	1	-	-	-	+ - +	-	- 10			-	+ -	-	-	- 5 - 20	66 - 00 -	+ +	-	-		+ - +				+ - +		-	-			-			-	-	-	-		-		-	+ +	+	-
Upstream Upstream	LMP01 LMP01	10/08/2020 17/08/2020	160 7. 220 8.	-	- 54	1	1	-	1	-	-	- 8			1 :	1:	-	-	- 7	2 -	-				1 :		-		1 -		-	-			-	-		-	-	-	-		-		1 :	\Box	-	7
Upstream	LMP01	24/08/2020	240 8.	9	- 8		-		-	1 .	-	- 6	-				-	-	- 6	i5 -		-	-		1.		-		1.			-			-	-		-	-	-			1		-		-	Ξ.
Upstream Upstream	LMP01 LMP01	31/08/2020 7/09/2020	480 8 510 8.	_	- <1	-	-	-	-	1 :	-	- 35 - 29	-		-	-	-	-	- 13 - 15		+ -	-	-		-		-		1:		-	-			-			-	-	-	-		-		-	+++	=	
Upstream Upstream	LMP01 LMP01	23/09/2020 28/09/2020	364 7.9 459 7.8	-	224 -	-	-	55	55	<1	23.3	- 8.74 - 15.82		- 0.10	13 -	5.04	-	20.8	- 98	3.5 50	0 <10	-	-	. 0.02	530	20 <1	-	22 -	<1	50 -	0.1		<1 -	6 3	783	54 <	d -	76	23	<0.04	12	- 7	-	0.5 -	<1	-	31	14
Upstream	LMP01	6/10/2020	427 8. 456 7.8	1		1	-	-	-	1 - 1	-		-		-	-	-	-	- -	- -	1	•	-		1 : 1		-		1.			-			-	-		-	-	-	-		-		-	##	-	7
Upstream Upstream	LMP01 LMP01	12/10/2020 19/10/2020	456 8.0	3		1	+	+ :	+			- 12.86			+ -	-	-	-		. .		-		- -	+ -		-		+++			-			-		- -		-	-			-		1	\pm	<u>:</u>	_
Upstream Upstream	LMP01 LMP01	26/10/2020 2/11/2020	196.4 7.5			1	1 -	-	1 -	1 -	-	- 2.967	1:1	- -	-	-		-	- -	· -		-	-	- -	1:1	- -	1 - 1		1:1			-	- -	1 1 -	+ -	-	- -	1:	-	-	-		1 -		-	+ + -	+	$\frac{\cdot}{\cdot}$
Upstream Upstream	LMP01 LMP01	9/11/2020 16/11/2020		\perp		-	-	-	-		-	- 10.88 - 2.999	-		-	-	-	-	- -	- -	-	-	-		1 - 1		-		1 - 1		-	-			-		- -	-	-	-	-		-		-	\vdash	-	=
Upstream	LMP01	18/11/2020	404 7.8	9 2	242 -	Ė	Ė	60	60	<1	26.1	- 18.2	14.6	- 0.19	9 -	5.56	-	31.7	- 22	24 14	0 <10	-	-	.3 <0.01	340	10 <1	-	23 -	<1	:50 -	0.1		<1 -	5 2	395	20 <	d -	168	50	<0.04	8	- 10	1	1.4 -	<1	\pm	34	17
Upstream Upstream	LMP01 LMP01	23/11/2020 7/12/2020	305 7.	,		-	-	-	-	-	-	- 4.998	-		-	-	-	-		. .	-	-	-						-		-	-			-		 	-	-	-	-		-		-	+++		
Upstream Upstream	LMP01 LMP01	14/12/2020 16/12/2020	354 7. 379 7.	-	234 -	- <1	-	107	107	<1	27.8	- 9.997 - 9.08	17.4	- 0.19	8 -	4.86	-	23.4	-	.05 - 0.5 20	0 <10	-	-		310	30 <1	- <1	23 -	<1	 .50 <50	<0.1	-	<1	4 2	312	<50 <	 d -	136	- 56	<0.04	11	- 6	- 4	0.4	- <1	1	- 13	9
Upstream	LMP01	21/12/2020	366 7.6	2			-	1	-		-		-			-		-		. .		-	-		1	-					-	-		1 1	-	-		-	•	-					-		=	Ξ.
Upstream Upstream	LMP01 LMP01	4/01/2021 7/01/2021	209 7.5 184 7.1		154 -	<1	-	58	- 58	<1	13.7	- 8.997 - 4.66	6.98	- 0.13	3 -	3.91	-	8.08	- 42 - 31	_	0 <10	-	- 1	.7 0.06	1190	170 1	<1	21 -	<1	· · · · · · · · · · · · · · · · · · ·	<0.1	-	1 -	6 3	1340	210	2 -	86	43	<0.04	8	- 8	5	<10	<1		28	9
Upstream Upstream	LMP01 LMP01	11/01/2021 1/02/2021	244 7.5 292 7.6		174 -	-	-	-	-		-	- 4.013 - 10.03			0.2		-	-	- 53. - 65.			-	-				-				-	-			-			-	-	-	-		-		-	-	-	-
Upstream	LMP01	1/03/2021	419 7.7	2 2	250 -	Ŀ	-	ļ.	-	1.	5.34	- 12.04	1 -		0.21	-	-	-	- 86. - 99.	.02 -	1-1	-	- 1	. -	-		-		-		0.2	-			-				-	<0.04	-		-		-	\Box	- 35	- 33
Upstream Upstream	LMP01 LMP01	8/03/2021 6/04/2021	453 7.8 568 8.0	1 3	-	<u> </u>	-	-	-	-	5.34	- 19.06			0.18		-	250	- 14	1.4 -	-	-	-		-		-		- 1		-	-			200			-	15	<0.04	-	- 6	-		-	+++	-	-
Upstream Upstream	LMP01 LMP01	3/05/2021 7/06/2021	535 7.7 230 7.7		390 - 150 -	-	-	-	-	+ - +	-	- 18.06 - 12.04			0.16 0.105		-	-	- 14: - 5	5.2 -	+ +	-	-		1:				+ - +		-	-			-			-	-	-	-		-		-	+++	+	\exists
	LMP01	Min. Max.	160 7.1 568 9.	-	150 <1 390 54	ব	73 73	-	55 107		5.34 28.8		2.07	- 0.10 - 0.19	0.105	3.91		8.08 250	-	1.6 20 24 14	0 <10	:	_	1.3 <0.01		<10 <1	ব	19 -		<50 <50 100 <50			<1 ·	4 2	200	_	1 -	71 168	10 56	<0.04 <0.04	8 23	- 4	4	0.4 -	ব		13 35	
	LMP01	Average	357 -	- 2	236 17	-	-	70	71	0.5	21	- 12	12	- 0.1	5 0.18	6.1		61	- 9	15 72		-		.4 0.021			\rightarrow	_		42 25	-	- (0.58 -	5 2.5	_		75 -	110	33	0.02	12	- 6.8	5	2.1 -	0.5		26	_
Mid-stream Mid-stream	NC01 NC01	22/07/2020 24/09/2020	371 7.4 251 6.7		220 -	-	- 84	52	52 52	_	22.7 15.4	- 9.68	11.8 8.8	- 0.13 - 0.06		5.57 3.9	-	35.3 15.3	_	3.1 20 1.8 24	0 <10 0 <10	<0.01	- 0.2	1.2 <0.01	280	20 <1 50 <1	-	19 - 30 -	<1	50 - 60 -	<0.1	-	<1 -	2 1	763 558	174 <	d - d -	124	111	<0.04	4	- 3	-	<0.2 -	<1	+++	9	7
Mid-stream Mid-stream	NC01 NC01	22/10/2020 19/11/2020	237 6.7 265 7.1	-	145 -	-	-	47	47		14.3		8.88 9.93	- 0.09 - 0.2		4.02 3.23	_	19.7	- 51 - 60	1.7 80 1.9 <1	0 <10	<0.01	_	.3 0.01 .2 <0.01		_	-	33 -	<1	<50 - <50 -	<0.1		<1 -	1 <1 3 <1	655 695	220 < 98 <	d -	209 277	196 164	<0.04	3	- 3	-	<0.2 - 0.4 -	<1	-	<5 .	<5 5
Mid-stream	NC01	16/12/2020	180 7.0 147 7.1	2	92 -	ব	-	52	52	<1	11	- 11.1	6.65 4.99	- 0.08	9 -	2.59	-	14.5	- 25	-	0 <10	<0.01	-	1.4 <0.01	250		ব	29 -	<1	<50 <50	<0.1	-	<1 -	3 <1	622	200 <	d -	141	135	<0.04	1	- 2	2	<0.2 -	<1	\perp	6 .	<5
Mid-stream Mid-stream	NC01 NC01	7/01/2021 17/02/2021	187 7.0	4 1	114 -	ব		46	46		10.8	- 12.1	6.08	- 0.09	6 -	3.76	-	16.4	-	1.4 20	0 <10	-	-	.1 0.01		-	ব	27 -	<1	50 <50 <50	<0.1	-	<1 -	<1 <1	620	180 <	d -	199	172	<0.04	2	- 2	2	0.2 -	<1		<5	5
Mid-stream Mid-stream	NC01 NC01	26/03/2021 28/04/2021	238 7.3 307 7.8		161 - 150 -	ব	-	48			15.5 15.5		8.25 11.2	- 0.09 - 0.07		6.11 4.48		28 19	-	5.3 60 2.8 30	0 <10	-	-	1.4 0.02 1.2 <0.01	670	-	ব	23 -	<1 -1	<50 <50 <50 <50	<0.1	-	<1 -	1 <1	1020 580	160 <	d - d -	71 314	55 164	<0.04	2 <1	- 4	1	1.6 - <0.2 -	<1	_	5 -	6 <5
Mid-stream Mid-stream	NC01 NC01	20/05/2021 16/06/2021	220 7.2 157 7.0		116 - 95 -	ব	1	49	49 52		12.3 9.02		8.95 5.5	- 0.06		3.78	-	17.5	- 45	5.6 30 4.3 10	0 <10		- <	0.1 <0.01 12 <0.01	150	10 <1	ব	28 -	<1	<50 <50 <50 <50	<0.1 <0.1	-	<1 -	ব ব 1 ব	294 246	100 <	d -	119 72	116 75	<0.04	ব	- 1	<1	<0.2 -	<1	\Box	<5 ·	<5
Wild Stream	NC01	Min.	147 6.7	5	92 -	ব		42	42	<1	9.02	- 6.83	4.99	- 0.0	5 -	2.59		8.1	- 15	5.2 <1	0 <10		0.2	0.1 <0.01	50	10 <1		19 -			<0.1			ব ব	246	98 <		71	<1	<0.04		- 1			<1		<5 .	<5
	NC01 NC01	Max. Average	371 7.8 233 -	1	220 -	<1 0.5	_		_	0.5	_		8.3		97 -	6.11	-		- 4	4 47	7 5	0.005	- 0	29 0.012		53 0.5								3 1 1.6 0.64	657	159 0	.5 -		118	0.024		- 4 - 2.5			0.5		10 6 4	
Mid-stream Mid-stream	SW_C SW_C	13/08/2020 16/09/2020	196 7.4 219 6.5		103 -	1 :	39 39		39 39	_	-		5.97 5 7.49	.89 0.05 - 0.05			-	_	17 33 16.9 36	_	40 <10 0 <10	_	_	.9 0.01 1 <0.01	520 190	160 <1 70 <1	\rightarrow	32 28 37 33	_	<50 <50 <50 <50	<0.1 <0.1	-	_	2 <1	_		-	41 82	-			3 3	\rightarrow	0.5 0.4 <0.2 <0.	2 <1		13	_
Mid-stream Mid-stream	SW_C SW_C	21/10/2020 12/11/2020	239 7.0 238 6.9	3 1	153 -	-	-		48 44		-		8.24 7 7.25 7								0 <10			1.3 <0.01	340	140 <1	<1	33 31 28 25			<0.1	<0.1	<1 <1	ব ব ব ব	399	167 <	1 1		133	<0.04	2	- 3		<0.2 <0.	2 <1	-	8	6
Mid-stream	SW_C	27/11/2020	238 6.9	5 1	112 -	<1	<u> </u>	44	44	-	9	- 10.3	5.18	- 0.07	73 -	2.97	-	14.8	- 23	3.4 10	0 <10	<0.01	-		420	130 <1	<1	29 -	<1	<50 <50	<0.1	-	<1 -	2 2	460	180 <	d -	105	95	<0.04	2	- 3	2	<0.2 -	<1	-	7	6
Mid-stream Mid-stream	SW_C SW_C	16/12/2020 7/01/2021	182 7.1 146 7.0	8	99 -	ব	-		48 48		10.9 8.22	- 7.35	6.58 4.22	- 0.08 - 0.08		2.59 2.5		14.3 6.97			0 <10	<0.01	-		460	80 <1 150 <1	<1	29 -		_	0.2 <0.1	-	-	2 1			d -	78	90		2	- 3	3	0.2 -	<1	_	6 15	_
Mid-stream Mid-stream	SW_C SW_C	17/02/2021 26/03/2021	185 7.1 242 7.3		123 - 162 -	ব	-		48		10.2		5.74 7.28	- 0.08 - 0.07		3.66 4.96		15.6 26			0 <10	-	-		130 420		\rightarrow	27 -	<1	<50 <50 <50 <50	<0.1	-	<1 -	2 <1		160 <	d -			<0.04		- 4	3	0.3 -	<1	+ +	6 7	<5 5
Mid-stream Mid-stream	SW_C	28/04/2021 20/05/2021	265 7.3 216 7.1	9 1	184 -	ব	-	52	52 48	<1	15.4	- 12.7	11.4 8.47	- 0.06 - 0.05	6 -	4.48	-	18.9	- 62	2.8 <1	0 <10	-	-		70	20 <1	<1	30 - 29 -		_	<0.1	-	<1 -	1 d	336	130 <	d -	162		<0.04	<1	- 2	$\overline{}$	<0.2 -	<1	1	_	9 <5
Mid-stream	SW_C SW_C	16/06/2021	152 6.9	9	83 -	<1		45	45	<1	8.6	- 12.2	5.34	- 0.06	31 -	3.45		13.3	- 23	3.3 <1	0 <10	_			130	40 <1	<1	24 -	<1	<50 <50	<0.1	-	<1 -	1 <1	244	130 <	d -	79	65	<0.04	<1	-	\rightarrow	<0.2 -	<1		<5	6
	SW_C	Min. Max.	146 6.5 265 7.4		83 -	ব				ব			11.4																					2 2														
Mid-stream	SW_C SW_E	Average	210 - 218 7.1		128 - 121 -	0.5		47		0.5	11		6.9								7 5 30 <10				3 261 510					25 25 (SI) <si)< th=""><th></th><th>0.05</th><th>0.5 0.5</th><th>1.3 0.71</th><th></th><th></th><th></th><th>105 90</th><th></th><th></th><th></th><th></th><th></th><th></th><th>B 0.5</th><th><1</th><th>7.1</th><th>6.3</th></si)<>		0.05	0.5 0.5	1.3 0.71				105 90							B 0.5	<1	7.1	6.3
Mid-stream Mid-stream	SW_E	13/08/2020 16/09/2020	367 6.6	7 2	240 -	Ė	51			1 - 1	-	- 21.5	13.1	- 0.07	п -	5.59	4.94	33	30 7	3 10	0 <10	-	-	.3 <0.01	40	<10 <1	<1	20 18		<50 <50	<0.1	<0.1	<1 <1	2 <1	335	196 <	d ব	194	168	<0.04	<1	- 14	12	<0.2 <0.	2 <1	-	5	6
Mid-stream Mid-stream	SW_E SW_E	21/10/2020 11/11/2020	571 7.0 377 7.1	3 2	334 - 298 -	1			75	<1	-	- 15.4	20.7	3.4 0.06	9 -	4.52	3.88	39.7		1.4 <1	0 <10			1.3 <0.01	30	<10 <1	<1	18 18 17 16		<50 <50	<0.1	<0.1	<1 <1 <1 <1	1 1 1 1 1 1	400	242 <	d d	208		<0.04	1		13	<0.2 <0. 0.3 0.3	2 <1	+++	<5	8 <5
Mid-stream Mid-stream	SW_E SW_E	27/11/2020 16/12/2020	377 7.1 590 7.2		398 - 352 -	ব	-	107	107		28.8 28.6		22.4	- 0.11 - 0.18		4.83		53.3 55	_	-	0 <10	_	-	- -	40 30	-	\rightarrow	17 -		<50 60	-		<1 -	1 1	_		d -	714 768				- 43 - 42		<0.2 -	<1	$+$ $\overline{+}$	7 <5	8 5
Mid-stream	SW_E	7/01/2021	256 7.	3 1	148 -	<1	1	82	82	-	13.2	- 13.4	7.93	- 0.17	73 -	2.33	-	14.6	- 35	5.7 <1	0 <10	<0.01	-	- -	100	20 <1	<1	14 -	<1	<50 <50	<0.1	-	_	1 4	575	280 <	d -	475	487	<0.04	1	- 11	11	<0.2 -	<1	丰	-	5
Mid-stream Mid-stream	SW_E SW_E	17/02/2021 26/03/2021	447 7.3 246 7.4	2 1	302 - 163 -	ব	-	50	110 50	<1	30 14.2	- 14.6	18.2 8.02	- 0.16 - 0.10	14 -	5.22 4.64		41.3 23.3	- 39	9.8 20	0 <10	-	-			60 <1	<1	24 - 16 -	<1	<50 50 <50 <50	<0.1	-	<1 -	2 1	763		d -	1630 202	194	<0.04	1	- 6	6		<1	 	<5	<5 8
Mid-stream Mid-stream	SW_E SW_E	28/04/2021 20/05/2021	489 7. 515 7.0		332 -	<1	-	67	67 62		22.8		17.4	- 0.10 - 0.07		5.34 5.22		44 45.6		25 <1 38 <1	0 <10	-	-	· -	20 <10	<10 <1		21 -		60 50 50 <50	<0.1 <0.1	-	<1 -	1 <1 <1	_	410 : 500 <		731 847				- 23 - 26		<0.2 -	<1	+	-	14 <5
Mid-stream	SW_E	16/06/2021	437 7.0 218 6.6	2 2	268 -	ব		67	67	_	21.6	- 33.1	16.6	- 0.12	2 -	5.49	-	44.5	- 11	13 <1	0 <10	- 40.04	0.4		30		<1	14 -	<1	<50 <50	<0.1		্ব -	ব ব	613	600 <	d -	436	407	<0.04	<1	- 26	24		<1		8	5
	SW_E SW_E	Min. Max.	590 7.4	2 3	398 -	<1	51	110	110	<1	30	- 44	22.6 1	8.8 0.18	13 -	5.59	4.94	55	46.9 15	57 113	30 <10	<0.01	0.4	.5 0.01	510	150 <1	<1	24 18	<1	60 60	<0.1	<0.1	ব ব	2 1	918	600	2 <1	1630	1570	<0.04	2	1 43	41	0.6 0.3	<1	<1	8	14
	SW_E	Average	408 -	2	272 -	0.5		80	77	0.5	23	- 28	16	13 0.11	1 -	4.7	4.4	39	32 9	8 11	3 5	0.005	- 0	58 0.006	3 89	23 0.5	0.5	18 17	0.5	33 35	0.05	0.05	0.5 0.5	0.88 0.58	656	349 0.	63 0.5	571	545	0.02	1	- 23	22	0.17 0.1	5 0.5	1 - 1	4	8.ذ

			Field Pa	rameters	TI	DS							Anio	ns / Cations								N	lutrients															Metals				_					_			
			Electrical Conductivity (Field)	pH (Field.)	Total Dissolved Solids (TDS)	Total Suspended Solids (TSS)	Carbon ate (as CaCO3)	Total Alkalinity (as CaCO3)	Carbonate Alkalinity (as CaCO3)	Bicarb onate Alkalinity (as CaCO3)	Phen olphthal ein Alkalinity (Ca CO 3) Calcium	Calcium (Filtered)	Chloride	Magnesium Magnesium (Filtered)	Fluoride	Fluoride (Filtered)	Potas sium	Potassium (Fintered) Sodium	Sodium (Filtered)	Suffate (as SO4)	Nifrate	Nitrite (as NO2-)	Nifrite (as N.) Mitocom (A) - Kladdeh	Nitrogen (N)	Phosphorus	Aluminium	Aluminium (Filtered)	Arsenic (Filtered)	Barlum	Barium (Filtered)	Berylli um Boron	Boron (Filtered)	Cadmium	Cadmium (Filter ed.) Chromium	Chromium (Filtered)	Copper	lron	Iron (Filtered)	Lead	Lead (Filtered) Manganese	Manganese (Filtered)	Mercury	Molybdenum	Molybd enum (Filtered) Nokel	Nickel (Filtered)	Selenium Selenium (Filtered)	Silver	Silver (Filtered)	Zinc (Filtered)	· · · · · · · · · · · · · · · · · · ·
				pH units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L		mg/L mg	. mg/L	mg/L	mg/L m	g/L mg/l	. mg/L			µgL n	ngL m	gL mgL	mg/L	. µgL																	μg/L μ							
ANZECC (2000) or	Local Guidelines	- Surface Water	2200	6.5-8	1500								350		1.5	1.5				1000								24 24	700	700	100 37	370	0.85	0.85 2	2	3.5 3	5 300	300	5	5 1900	1900	0.06	10	10 17	17	5 5	0.05	0.05	116 11	6
Purpose	LocCode	Sampled_Date-Time																																																_
Downstream	SW G	13/08/2020	265	7.28	139	- 1	- T	40	-	40	<1 -	-	19	8.43 7.9	0.108	-	4.54 4	.13 23.8	23	62.3	1120	<10	- 0	3 1.4	<0.01	1 480	100	<1 <	11	10	- <	0 <50	<0.1	<0.1 <1	<1	<1 <	1 386	128	<1	<1 43	31	<0.04	1	1 6	6	<0.2 <	J.2 <1	<1	<5 <	5
Downstream	SW G	16/09/2020	383	6.72	254	- 1	- 1	52	-	52	<1 -	-	4.53	14.8 -	0.014	-	5.98	i.4 35.7	32.2	15.9	90	<10		- 0.3	<0.01	1 720	<10	<1 <1	21	15	- 17	9 <50	<0.1	<0.1 <1	<1	2 <	1 124	60	<1	<1 44	44	<0.04	<1	- 12	11	<0.2 <	J.2 <1	+-	<5 <5	5
Downstream	SW G	21/10/2020	650	7.18	396	- 1	- 1		74	74	<1 -	-	47.2	22.9 22	0.107	-	5.82 5	37 54.8	54	195	70	<10 <	0.01	- 0.3	<0.01	1 20	<10	<1 <1	19	18	- <	0 <50	<0.1	<0.1 <1	<1	<1 <	1 163	73	<1	<1 157	147	<0.04	<1	- 28	27	<0.2 <	J.2 <1	+-	<5 <5	5
Downstream	SW G	11/11/2020	446	7.3	300	- 1	- 1		79	79	<1 -	-	22	-	0.085	-	4.53 4	.11 44	40.4	107	<10	<10 <	0.01	- 0.2	0.02	20	<10	<1 <1	- 11	10	- <	0 <50	<0.1	<0.1 <1	<1	<1 <	1 193	90	<1	<1 65	58	<0.04	<1	- 14	14	0.3 0.2	.2 <1	+-	<5 <5	5
Downstream	SW G	27/11/2020	446		308		<1		97	97	- 26.2	-	22.7	17.6 -	0.091		4.22	- 40.2	-	96.8	<10	<10 <	0.01		1 -	40	<10	<1 <	12	1.1	<1 <5	0 <50	⊲0.1	- <	-	<1	220	140	<1	- 217	216	<0.04	1	- 20	17	<0.2	<1	1.	<5 <5	5
Downstream	SW G	16/12/2020	930		550	- 1	<1	- 1	115	115	- 47.2	- 1	79.3	-	0.175		4.72	- 89.1		280		<10 <	0.01		T -	10	<10	<1 <	20	1.1	<1 9	80	⊲0.1	- <1	1.	<1 <	204	60	<1	- 409		<0.04	<1	- 48	46	<0.2	<1	+	< 6	<u>,</u>
Downstream	SW G	7/01/2021	251	7.58	161	- 1	<1	-		69	- 14.8	- 1	13.2		0.156		3.22	- 16.4		43.9	<10	<10 <	:0.01		١.	320	60	<1 <	10	 . 	<1 <	0 <50	<0.1	- <1	٠.	2 <	496	150	<1	- 96	79	<0.04	<1	- 9	9	<0.2	- <1	+-	<5 <5	5
Downstream	SW G	17/02/2021	495		338			-		94	<1 32.4		32	_	0.189	_	6.54	- 49.5		99.2	_	<10			٠.	30	<10	d d	15	 . 	<1 <5	0 <50	<0.1	. <	٠.	<1 <	1 195	60	<1	. 355	321	<0.04	1	. 21	18	02	<1	+	<5 <5	\pm
Downstream	SW G	25/03/2021	211	7.16	147		-1	-	_	38	<1 12.8	H. H	12.2	-	0.105	 	4.51	- 17.7		35.9		<10			٠.		120	<1 <	12	_	-1 -6	0 <50	<0.1	. <	٠.	2 .	_	210	<1		38	_	<1		6		<1	+	10 <5	-
Downstream	SW_G	28/04/2021	650	7.23	489	_	4	-		50	<1 36.2		38.7	-	0.116	_	5.94	- 49		211		<10	_	_	+	<10	<10	4 4	28	-	-1 B	en en	40.1		_	4 4	1 86	_	-1	- 739				_	26	<0.0		+	<5 6	_
Downstream	SW G	20/05/2021	710	7.07	441		el	-	61	61	<1 36		-	26.4 -	<0.1		6.06	- 56.1		228		<10		- -	+ :	<10	<10	<1 <1	19	 	<1 6	60	<0.1	. <	+ :	<1 <	1 98	_	<1	- 460		<0.04	<1		32	<0.2	<1	++	< 6	_
	SW G		512		296	-	<1	_		63	<1 26.2	-	37.3		0.121		5.97	- 47.3		141		<10	-	-	 	10	<10	4 4	13	 	-1 B	- G0	40.1		+ -	21 2	1 175	\rightarrow	-21	- 116					18	40.2	- 21	+-	6 5	_
Downstream	SW G	16/06/2021 Min.	211	6.72	139	-	-	_	-		<1 12.8		_	7.13 7.9		 		.11 16.4		15.9	_	<10 <	0.04	3 0.2	<0.01	1 <10	<10	<1 <	_	_	ব ব	0 <50	<0.1	<0.1 <1		4 4	_	<50	4	<1 38		<0.04				40.2	2 4		45 K	_
-			\rightarrow		550	•		-	_	_			_	-		<u> </u>		_		_	_	-	_	3 1.4	-	_	120	1 1	28	-	<1 17	_	_	<0.1 <1	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	763	_	\1	-		_	+ "+	_	46	-	_		10 6	_
	SW_G	Max.	930 496	7.58	318	•	0.5	_	_	115	<1 47.2 0.5 29		$\overline{}$	-		<u> </u>		i.4 89.1		280 126			0.001 0	0.55	0.02			0.5 0.5	_	-	0.5 5			0.05 0.5	-1	0.88 0.			\1	<1 739 0.5 228		0.05	0.63			0.3 0.2			3.4 3.0	_
	SW_G	Average		7.25	130	-	0.5	_	40	40	U.S 29		_	19 16 8.57 8.1	0.11	<u> </u>	_	_	_	19.6	_	3 0	.000	1.4	_	1 490	400	0.5 0.5	12	13	0.5	33	0.05	U.US U.:	0.5	0.88 0.	239	126	0.5	0.5 228 <1 44	214 36	_	0.63	- 20	19	0.14 0.1	3 0.5	+-		-
Downstream	WX22	13/08/2020	263 387	6.77	242	-	-	_	_	52	<1 22.2	-	_	14.7 -	0.027	<u> </u>		24 24 54 35.6		81.1	_	-10	0.01	0.4	_	490	100	VI VI	12	10		0 -50	90.1	-0.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	337	61	×1	<1 44		<0.04	+ +	- 12	9	-0.0	2 1	+-	<5 <5	_
Downstream	WX22 WX22	16/09/2020 21/10/2020	650	7.17	349		-+	52	-	71	<1 22.2		-	23.4 -	0.074		5.9	- 54.2	_	165		410 <	0.01	<0.1	_	1 20	<10	-1 (19	13	- <	0 30	NU.1	-0.1 SI	- 1	1 5	1 168			- 174		<0.04			-	~0.2 <u.< th=""><th>- N</th><th>+</th><th>5 <5</th><th>_</th></u.<>	- N	+	5 <5	_
Downstream		25/11/2020	454		300	-	<1	-	_	85	<1 25.8	-	21.6	-	0.058	_	4.05	- 34.2		92.7		1.0	:0.01	0.2	_	. 20	-10	1 -	11	-	<1 12		90.1	. <	-		_	70	×1	_	123	_			16	0.2	- <1	+	6 7	_
Downstream	WX22		-		308	-	<1	-			<1 25.8		_	_	_	<u> </u>	4.05	_	_	97.5		<10 <	0.01	_	_	1 50	<10	<1 <1	12	 	<1 12	0 <50	QU.1	- <	+ -	2	230	_	<1	_	_	<0.04	- <1	_	17	0.2	<1	+-	7 6	_
Downstream	WX22	27/11/2020 16/12/2020	454 930	7.23 7.34	560	-	<1	-		98 116	<1 25.1		22.8 79	16.9 -	0.097	<u> </u>	5.03	- 38.8 - 92.6		279		<10 <	0.01	0.2	-	1 10	10	<1 <1	20	 	<1 8	0 <00	QU.1	- <	+ -	<1	_	70	<1	- 230		<0.04			46	<u.2< th=""><th>- (1</th><th>+-</th><th>5 <5</th><th>_</th></u.2<>	- (1	+-	5 <5	_
Downstream	WX22		\rightarrow			-	<1	-	-	_	-		-	-				_	_	42.7		<10 <	0.01	_	_	1 270	<10	<1 <1	10	 	<1 8	80	QU.1	- (+ -	2 3	1 514	_	<1	-		_	<1	_	_	QU.2	<1	+-		_
Downstream	WX22	7/01/2021	249	7.54	146	-	<1	_		67	<1 14.6	-	12.9	-	0.152		3.19	- 16.2				<10 <	0.01	0.3	_	1 2/0	60	<1 <1	- 12	 • 	<1 <	0 <50	<0.1	- <	-	2 <	1 191	112	<1	- 95		<0.04	<1	_	8	<0.2	<1	$+$ \cdot $ -$	<5 <5	_
Downstream	WX22	17/02/2021	495	7.54	324	-	<1	_	_	94	<1 27.4	-		18.6 -	0.179		5.6	- 41.3		99.3		<10	-	<0.1	_	1 <10	20	<1 <1	14	_	<1 5	<50	<0.1	- <	-	<1 <		100	<1	- 374		<0.04			18	-	<1	+-	<5 <5	_
Downstream	WX22	25/03/2021	213		145	-	<1	_	38	_	<1 15.3	-	12.4		0.11		5.98	- 20		37		<10		0.3	_	520	130	<1 <1	12	_	<1 <	0 <00	<0.1	- <1	_	1 <		270	<1			_			6	0.4	<1		7 <5	_
Downstream	WX22	28/04/2021	649	7.15	475	-	<1	-	-	52	<1 39.7		38.8		0.105	_	6.05	- 50.8			20	<10		0.1	_	1 10	<10	<1 <	29	_	<1 6		⊴0.1	- <1	1.	<1 <	1 122	_	<1	- 782		<0.04			28	<0.2	<1		8 8	_
Downstream	WX22	20/05/2021	704	7.12	451	-	<1	_	_	54	<1 35.7	·	50.7	-	<0.1	_	6.07	- 56		_	20	<10		<0.1	_	1 20	<10	<1 <	24	 	<1 6	70	<0.1	- <	1 -	<1 <	1 124	_	<1	- 483	_	<0.04	<1		32	<0.2	<1	لنب	11 <5	_
Downstream	WX22	16/06/2021	497		294	•	<1	_	_	64	<1 27.6	-	37.7		0.121	-	6.19	- 48.5	_	142	_	<10		0.1	_	1 <10	<10	<1 <	12	-	<1 5	<50	<0.1	- <	-	<1 <	1 161	110	<1	- 116	_	<0.04	<1		20	<0.2	<1	لنه	<5 8	
	WX22	Min.	213		130	•		-	_	-	<1 14.6		$\overline{}$	8.28 8.1		ļ .		24 16.2		19.6	_	_	:0.01	- <0.1	-	_	<10	ব ব	10	-	<1 <5	-	_	<0.1 <1	<1	<1 <		-	<1	<1 44				_	6	_	0.2 <1		<5 <5	_
	WX22	Max.	930	7.54	560	_		_		-	<1 49.2	·	-	38.3 8.1			6.07 5	-		_		<10 <		- 1.4				ব ব			<1 12			<0.1 <1		-	_	270	_	_	752					0.4 <0.			11 8	
	WX22	Average	495		312	.	0.5	- [72	70	0.5 29	ı - I	31	19 -	0.1		5.1	- 43	1 -	124	130	5 0	1.005	- 0.3	0.01	144	32	0.5 0.5	16	1 - 1	0.5 4	39	0.05	- 0.5	-	1 0.	9 295	111	0.5	- 261	251	0.02	0.77	- 20	19	0.15 -	- 0.5	<u> </u>	5.4 4	4

				Field Para	ameters	TDS	Т						Majo	r Anions	and Catio	ns					
				Electrical Conductivity (Field)	ər (Field)	fotal Dissolved Solids (TDS)	Carbonate (as CaCO3)	rotal Alkalinity (as CaCO3)	Sicarbonate Alkalinity (as CaCO3)	Phenolphthalein Alkalinity (CaCO3)	Calcium	Calcium (Filtered)	Chloride	Magnesium	Magnesium (Filtered)	luoride	otassium	Potassium (Filtered)	sodium	Sodium (Filtered)	Sulfate (as SO4)
				uS/cm	pH units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
ANZECC (2000) or Local Guidelines - Groundwater				2600	6.5-8	2000							350			1.5					1000
Purpose	LocCode	Sampled_Date-Time	SampleCode																		
Within MPAR / Mine Disturbance Area East of MPAR	D10	17/09/2020	D10_17 Sep 20_	4000	6.09	2970	-	155	T -	-	137	-	230	106	-	<0.5	74.1	-	577	-	1500
Within MPAR / Mine Disturbance Area East of MPAR	D10	26/11/2020	D10_26 Nov 20_	4680	5.98	3780	<1	136	136	-	154	-	345	128	-	<0.5	88.5	-	755	-	2210
Within MPAR / Mine Disturbance Area East of MPAR	D10	17/03/2021	D10_17 Mar 21_	5190	6	4140	<1	171	171	<1	165	-	334	148	-	0.463	106	-	707	-	2070
Within MPAR / Mine Disturbance Area East of MPAR	D10	30/06/2021	D10_30 Jun 21_	4700	6.22	3370	<1	208	208	<1	156	-	308	135	-	0.643	106	-	880	-	1900
	D10	Min.	1	4000	5.98	2970	<1	136	136	<1	137	-	230	106	-	0.463	74.1	-	577	-	1500
	D10	Max.	1	5190	6.22	4140	<1	208	208	<1	165	-	345	148	-	0.643	106	-	880	-	2210
Within MDAD / Mine Distriction - Arra Fact - FAADAD	D10	Average	D11 17 Con 20	4643		3565	0.5	168	172	-	153	-	304	129	-	0.4	94	-	730	-	1920
Within MPAR / Mine Disturbance Area East of MPAR	D11	17/09/2020	D11_17 Sep 20_	9860	6.25	8620	1	125	100		550	-	929	432	-	<1	108	-	1480	-	4270
Within MPAR / Mine Disturbance Area East of MPAR	D11 D11	30/06/2021	D11_30 Jun 21_	9290	6.32	8200	<1	188	188	<1	671	-	917	530	-	0.435	130	-	1840	-	4320
	D11	Min.		9290	6.25	8200	<1	125	188	<1	550	-	917	432	-	0.435	108	-	1480	-	4270
	D11	Max.		9860 9575	6.32	8620 8410	<1	188 156.5	188	<1	671 610.5	-	929 923	530 481	-	<1	130 119	-	1840 1660	-	4320 4295
Within MPAR / Mine Disturbance Area East of MPAR	D19	Average 16/09/2020	D19_16 Sep 20_	4140	6.04	3140	-	155	+ -	+ -	121	-	244	108	-	<0.5	73.1	-	568	-	1690
Within MPAR / Mine Disturbance Area East of MPAR	D19	26/11/2020	D19_26 Nov 20_	4140	6.04	3290	<1	167	167	+ -	134	-	267	121	-	<0.5	77.6	-	641	-	1900
Within MPAR / Mine Disturbance Area East of MPAR	D19	15/04/2021	D19_15 Apr 21_	3930	6.08	3080	<1	164	164	<1	131	-	252	113	-	0.453	71.8	-	557	-	1690
Within MPAR / Mine Disturbance Area East of MPAR	D19	24/06/2021	D19_24 Jun 21_	4120	6.04	3190	<1	181	181	<1	155	-	266	132	-	<0.5	84.1	-	578	-	1930
	D19	Min.		3930	6.04	3080	<1	155	164	<1	121	-	244	108	-	0.453	71.8	-	557	-	1690
	D19	Max.		4140	6.08	3290	<1	181	181	<1	155	-	267	132	-	<0.5	84.1	-	641	-	1930
	D19	Average		4083	-	3175	0.5	167	171	† -	135	-	257	119	-	0.3	77	-	586	-	1803
Within MPAR / Mine Disturbance Area East of MPAR	D113	12/08/2020	MPW035292	4500	5.98	3490	-	158	-	<1	143	140	284	123	123	0.311	83.8	85.3	655	658	2080
Within MPAR / Mine Disturbance Area East of MPAR	D113	11/11/2020	D113_11 Nov 20_	4170	5.96	3190	<1	172	172	<1	149	141	245	118	119	<0.5	88	87	590	576	1870
Within MPAR / Mine Disturbance Area East of MPAR	D113	17/02/2021	D113_17 Feb 21_	4170	6.04	3230	<1	164	164	<1	137	-	280	121	-	<0.5	78.3	-	613	-	1890
Within MPAR / Mine Disturbance Area East of MPAR	D113	24/06/2021	D113_24 Jun 21_	4340	5.99	3410	<1	176	176	<1	171	-	281	147	-	<0.5	91.7	-	598	-	2020
	D113	Min.		4170	5.96	3190	<1	158	164	<1	137	140	245	118	119	0.311	78.3	85.3	590	576	1870
	D113	Max.		4500	6.04	3490	<1	176	176	<1	171	141	284	147	123	<0.5	91.7	87	655	658	2080
	D113	Average		4295	-	3330	0.5	168	171	0.5	150	-	273	127	-	0.27	85	-	614	-	1965
Within Mine Disturbance Area S & SE of MPAR	D15	16/09/2020	D15_16 Sep 20_	3280	5.11	2660		17	- 42	-	210	-	145	96.7	-	<0.5	42.5	-	377	-	1480
Within Mine Disturbance Area S & SE of MPAR	D15	26/11/2020	D15_26 Nov 20_	3220	5.13	2790	<1	12	12		198	-	228	90.9	-	<0.5	38.7	-	388	-	1680
Within Mine Disturbance Area S & SE of MPAR	D15	24/06/2021	D15_24 Jun 21_	2790	5	2260	<1	16	16	<1	176	_	138	74.8	_	<0.5	38.8	-	335	-	1460
	D15	Min. Max.		2790 3280	5	2260	<1	12 17	12	<1	176	-	138	74.8 96.7	-	<0.5	38.7	-	335 388	-	1460
	D15	Average		3097	5.13	2790 2570	-	15	16	<1	210 195	-	228 170	87	-	<0.5 0.25	42.5 40	-	367	-	1680 1540
Within Mine Disturbance Area S & SE of MPAR	D16	16/09/2020	D16 16 Sep 20	2120	6.27	1690	-	199	-	1	275	-	99.2	101	-	<0.2	31.9	-	59.1	-	779
Within Mine Disturbance Area S & SE of MPAR	D16	26/11/2020	D16_26 Nov 20_	2080	6.28	1820	<1	201	201	+ -	278	-	110	99.3	-	0.063	29.4	-	46.8	١.	883
Within Mine Disturbance Area S & SE of MPAR	D16	15/04/2021	D16_15 Apr 21_	2160	6.31	1870	<1	201	201	<1	305	-	123	104	-	0.227	31.6	-	54.2	-	958
Within Mine Disturbance Area S & SE of MPAR	D16	23/06/2021	D16_23 Jun 21_	2000	6.34	1650	<1	217	217	<1	280	-	104	96.3	-	<0.2	31.2	-	41.9	-	850
	D16	Min.		2000	6.27	1650	<1	199	201	<1	275	-	99.2	96.3	-	0.063	29.4	-	41.9	-	779
	D16	Max.		2160	6.34	1870	<1	217	217	<1	305	-	123	104	-	0.227	31.9	-	59.1	-	958
	D16	Average		2090	-	1758	0.5	205	206	-	285	-	109	100	-	0.12	31	-	51	-	868
Within Mine Disturbance Area S & SE of MPAR	D17	16/09/2020	D17_16 Sep 20_	3520	6.12	2800	-	116	-	-	225	-	187	143	-	<0.5	26.4	-	332	-	1400
Within Mine Disturbance Area S & SE of MPAR	D17	26/11/2020	D17_26 Nov 20_	3360	6.06	2870	<1	107	107	-	233	-	210	145	-	<0.5	24.6	-	339	-	1630
Within Mine Disturbance Area S & SE of MPAR	D17	15/04/2021	D17_15 Apr 21_	3170	6.11	2720	<1	138	138	<1	226	-	189	134	-	0.368	24.9	-	294	-	1520
Within Mine Disturbance Area S & SE of MPAR	D17	23/06/2021	D17_23 Jun 21_	3060	6.1	2480	<1	145	145	<1	240	-	176	134	-	<0.5	25.7	-	271	-	1410
	D17	Min. Max.	+	3060 3520	6.06	2480 2870	<1	107 145	107 145	<1 <1	225 240	-	176 210	134 145	-	0.368	24.6	-	271 339	-	1400 1630
	D17	Average	+	3520	6.12	2870	<1 0.5	127	130	-	231	-	191	139	-	<0.5 0.28	26.4 25	-	309	-	1490
Within Mine Disturbance Area S & SE of MPAR	D17	17/09/2020	D18 17 Sep 20	680	6.67	388	-	380	- 130	+-	81	-	7.53	30.2	-	0.457	20.3	-	17.4	-	7.42
Within Mine Disturbance Area S & SE of MPAR	D18	26/11/2020	D18 26 Nov 20	670	6.67	408	<1	388	388	1	75.9	-	77.7	28.9	-	3.04	18	-	16.4	-	88.7
Within Mine Disturbance Area S & SE of MPAR	D18	15/04/2021	D18_15 Apr 21_	670	6.74	394	<1	362	362	<1	77.5	-	8.77	27.1	-	0.274	18.3	-	17.7	-	11.2
Within Mine Disturbance Area S & SE of MPAR	D18	25/06/2021	D18_25 Jun 21_	670	6.73	378	<1	370	370	<1	83.3	-	8	29	-	0.501	20.2	-	18.5	-	10
	D18	Min.		670	6.67	378	<1	362	362	<1	75.9	-	7.53	27.1	-	0.274	18	-	16.4	-	7.42
	D18	Max.		680	6.74	408	<1	388	388	<1	83.3	-	77.7	30.2	-	3.04	20.3	-	18.5	-	88.7
	D18	Average		673	-	392	0.5	375	373	-	79	-	26	29	-	1.1	19	-	18	-	29
Background and Adjacent to MPAR	D3	17/09/2020	D3_17 Sep 20_	306	5.84	196	-	47	-	-	17.2	-	16.6	11.6	-	<0.05	3.53	-	23.1	-	66.9
Background and Adjacent to MPAR	D3	26/11/2020	D3_26 Nov 20_	850	5.95	664	<1	106	106	-	70.8	-	34.8	41.2	-	<0.1	9.03	-	37.7	-	291
Background and Adjacent to MPAR	D3	17/03/2021	D3_17 Mar 21_	910	6.11	610	<1	127	127	<1	75.7	-	60.8	44	-	<0.2	10	-	49.7	-	259
Background and Adjacent to MPAR	D3	24/06/2021	D3_24 Jun 21_	1090	6.22	751	<1	171	171	<1	90.8	-	73	53.4	-	<0.2	12.9	-	57.8	-	280
	D3	Min.		306	5.84	196	<1	47	106	<1	17.2	-	16.6	11.6	-	<0.05	3.53		23.1	-	66.9
	D3	Max.		1090	6.22	751	<1	171	171	<1	90.8	-	73	53.4	-	<0.2	12.9	-	57.8	-	291
	D3	Average		789	-	555	0.5	113	135	l -	64	-	46	38	-	0.069	8.9	-	42	-	224

				Field Para	meters	TDS	Т						Majo	r Anions	and Catio	ns					
				Electrical Conductivity (Field)	ph (Field)	Total Dissolved Solids (TDS)	Carbonate (as CaCO3)	Total Alkalinity (as CaCO3)	Bicarbonate Alkalinity (as CaCO3)	Phenolphthalein Alkalinity (CaCO3)	Calcium	Calcium (Filtered)	Chloride	Magnesium	Magnesium (Filtered)	Fluoride	Potassium	Potassium (Filtered)	Sodium	Sodium (Filtered)	Sulfate (as SO4)
ANZECC (2000) and and Cuttle lines. Consideration				uS/cm	pH units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
ANZECC (2000) or Local Guidelines - Groundwater				2600	6.5-8	2000							350			1.5					1000
Purpose	LocCode	Sampled_Date-Time	SampleCode																		
Background and Adjacent to MPAR	D4	15/07/2020	D4_15 Jul 20_	790	3.4	682	-	<1	-	-	17.5	-	14.9	9.8	-	<0.1	7.69	-	18.4	-	293
Background and Adjacent to MPAR	D4	22/10/2020	D4_22 Oct 20_	770	3.48	632	-	<1	-	-	15.7	-	16.7	8.88	-	<0.1	8.62	-	20.5	-	347
Background and Adjacent to MPAR	D4	12/11/2020	D4_12 Nov 20_	770	3.45	638	-	<1	-	-	15.8	-	15.7	8.43	-	<0.1	7.73	-	20.1	-	275
Background and Adjacent to MPAR	D4	11/02/2021	D4_11 Feb 21_	750	3.57	620	<1	<1	<1	<1	16	-	17.4	10	-	<0.1	7.19	-	17.6	-	320
Background and Adjacent to MPAR	D4	20/05/2021	D4_20 May 21_	770	3.39	583	<1	<1	<1	<1	16.5	-	16.9	9.56	-	0.063	7.98	-	20.3	-	308
·	D4	Min.	<u> </u>	750	3.39	583	<1	<1	<1	<1	15.7	-	14.9	8.43	-	0.063	7.19	-	17.6	-	275
	D4	Max.	İ	790	3.57	682	<1	<1	<1	<1	17.5	-	17.4	10	-	<0.1	8.62	-	20.5	-	347
	D4	Average		770	-	631	1.	0.5	-	-	16	-	16	9.3	-	0.053	7.8	-	19	-	309
Background and Adjacent to MPAR	D5	15/07/2020	D5 15 Jul 20	1260	5.96	882	-	106	-	-	103	-	29	69.4	-	0.711	9.75	-	29.5	-	582
Background and Adjacent to MPAR	D5	22/10/2020	D5 22 Oct 20	1230	5.91	921	-	93	-	-	92.8	-	21.9	65.7	-	<0.1	11	-	31.1	-	505
Background and Adjacent to MPAR Background and Adjacent to MPAR	D5	12/11/2020	D5_22 Oct 20_ D5_12 Nov 20	1240	5.95	908	1	96	-	-	107	-	23.9	74.5	-	0.108	11.9	-	36.5	-	530
							_		_			_						_	_		_
Background and Adjacent to MPAR	D5	11/02/2021	D5_11 Feb 21_	1150	6.05	842	<1	73	73	<1	89.1	-	25.6	67.4	-	0.233	8.84	-	26.6	-	505
Background and Adjacent to MPAR	D5	20/05/2021	D5_20 May 21_	1160	5.92	794	<1	84	84	<1	97.3	-	25.7	67.6	-	0.182	9.95	-	31.8	-	484
	D5	Min.		1150	5.91	794	<1	73	73	<1	89.1	-	21.9	65.7	-	<0.1	8.84	-	26.6	-	484
	D5	Max.		1260	6.05	921	<1	106	84	<1	107	-	29	74.5	-	0.711	11.9	-	36.5	-	582
	D5	Average		1208	-	869	-	90	-	-	98	-	25	69	-	0.26	10	-	31	-	521
Background and Adjacent to MPAR	D106	12/08/2020	MPW035285	7370	6	6000	-	117	-	<1	473	435	805	375	346	0.053	57.6	52.6	943	874	3550
Background and Adjacent to MPAR	D106	11/11/2020	D106_11 Nov 20_	11,910	5.99	10,600	<1	181	181	<1	594	493	1530	746	604	<1	110	105	1870	1500	6100
Background and Adjacent to MPAR	D106	17/02/2021	D106_17 Feb 21_	12,510	6	11,700	<1	189	189	<1	578	-	1530	665	-	<1	118	-	1840	-	5920
Background and Adjacent to MPAR	D106	10/06/2021	D106_10 Jun 21_	12,160	6.05	10,800	<1	170	170	<1	611	-	1530	722	-	<2	100	-	2100	-	5910
	D106	Min.		7370	5.99	6000	<1	117	170	<1	473	435	805	375	346	0.053	57.6	52.6	943	874	3550
	D106	Max.		12510	6.05	11700	<1	189	189	<1	611	493	1530	746	604	<2	118	105	2100	1500	6100
	D106	Average		10988	-	9775	0.5	164	180	0.5	564	-	1349	627	-	0.51	96	-	1688	-	5370
Background and Adjacent to MPAR	D107	12/08/2020	MPW035286	15,330	5.93	14,400	-	174	-	<1	535	551	2000	740	733	0.206	236	233	2440	2380	8550
Background and Adjacent to MPAR	D107	12/11/2020	D107 12 Nov 20	13,960	5.92	12,500	<1	202	202	<1	504	442	1570	756	635	<1	232	204	2510	2070	6720
Background and Adjacent to MPAR	D107	17/02/2021	D107 17 Feb 21	13,900	5.99	12,700	<1	203	203	<1	452	-	1640	641	-	<1	246	-	2360	-	6930
Background and Adjacent to MPAR	D107	10/06/2021	D107_10 Jun 21_	11,300	6.04	8480	<1	207	207	<1	378	-	1250	502	-	<2	191	-	1900	-	5150
	D107	Min.						174	202	<1	378	442	1250	502	635	0.206			1900	2070	5150
				11300		8480	<1										191	204			8550
I .	D107	Max.	i e	11300 15330	5.92	8480 14400	<1					551			733		191 246	204		2380	
	D107	Max.		15330		14400	<1	207	207	<1	535	551	2000	756	733	<2	246	233	2510	2380	
Adjacent to MPAR and Downgradient	D107	Average	D1 16 Sen 20	15330 13623	5.92 6.04	14400 12020		207 197		<1 0.5	535 467	-	2000 1615	756 660	733	<2 0.55	246 226	233	2510 2303	2380	6838
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107	Average 16/09/2020	D1_16 Sep 20_ D1_25 Nov 20	15330 13623 9810	5.92 6.04 - 5.95	14400 12020 8740	<1 0.5	207 197 127	207 204 -	<1 0.5	535 467 591	-	2000 1615 1110	756 660 549	-	<2 0.55 <1	246 226 103		2510 2303 1240	-	6838 4510
Adjacent to MPAR and Downgradient	D107 D1 D1	Average 16/09/2020 25/11/2020	D1_25 Nov 20_	15330 13623 9810 9920	5.92 6.04 - 5.95 5.84	14400 12020 8740 9360	<1 0.5 - <1	207 197 127 116	207 204 - 116	<1 0.5 -	535 467 591 584	-	2000 1615 1110 132	756 660 549 530	-	<2 0.55 <1 <1	246 226 103 108	233 - -	2510 2303 1240 1390	- - -	6838 4510 997
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1	Average 16/09/2020 25/11/2020 14/04/2021	D1_25 Nov 20_ D1_14 Apr 21_	15330 13623 9810 9920 9140	5.92 6.04 - 5.95 5.84 5.91	14400 12020 8740 9360 8590	<1 0.5 - <1 <1	207 197 127 116 154	207 204 - 116 154	<1 0.5 - - <1	535 467 591 584 29.9	- - -	2000 1615 1110 132 1120	756 660 549 530 21	- - -	<2 0.55 <1 <1 0.75	246 226 103 108 3.95	233 - - -	2510 2303 1240 1390 25.8	- - -	6838 4510 997 4790
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021	D1_25 Nov 20_	15330 13623 9810 9920 9140 9290	5.92 6.04 - 5.95 5.84 5.91 5.92	14400 12020 8740 9360 8590 8310	<1 0.5 - <1 <1 <1	207 197 127 116 154 184	207 204 - 116 154 184	<1 0.5 - - <1 <1	535 467 591 584 29.9 510	- - - -	2000 1615 1110 132 1120 1070	756 660 549 530 21 494	- - - -	<2 0.55 <1 <1 0.75 <1	246 226 103 108 3.95 95.1	233 - - - - -	2510 2303 1240 1390 25.8 1340	- - -	6838 4510 997 4790 4510
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min.	D1_25 Nov 20_ D1_14 Apr 21_	15330 13623 9810 9920 9140 9290 9140	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84	14400 12020 8740 9360 8590 8310	<1 0.5 - <1 <1 <1 <1	207 197 127 116 154 184 116	207 204 - 116 154 184 116	<1 0.5 - - <1 <1 <1	535 467 591 584 29.9 510 29.9	- - - -	2000 1615 1110 132 1120 1070 132	756 660 549 530 21 494 21	- - - -	<2 0.55 <1 <1 0.75 <1 0.75	246 226 103 108 3.95 95.1 3.95	233 - - - - -	2510 2303 1240 1390 25.8 1340 25.8	- - -	6838 4510 997 4790 4510 997
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D1 D1	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max.	D1_25 Nov 20_ D1_14 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95	14400 12020 8740 9360 8590 8310 8310 9360	<1 0.5 - <1 <1 <1 <1 <1	207 197 127 116 154 184 116 184	207 204 - 116 154 184 116 184	<1 0.5 - - <1 <1	535 467 591 584 29.9 510 29.9 591		2000 1615 1110 132 1120 1070 132 1120	756 660 549 530 21 494 21 549	- - - - -	<2 0.55 <1 <1 0.75 <1 0.75 <1	246 226 103 108 3.95 95.1 3.95 108	233 - - - - - - -	2510 2303 1240 1390 25.8 1340 25.8 1390	- - -	6838 4510 997 4790 4510 997 4790
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D1 D1	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95	14400 12020 8740 9360 8590 8310 8310 9360 8750	<1 0.5 - <1 <1 <1 <1	207 197 127 116 154 184 116 184 145	207 204 - 116 154 184 116 184 151	<1 0.5 - - <1 <1 <1 <1 - 1	535 467 591 584 29.9 510 29.9 591 429	- - - - - -	2000 1615 1110 132 1120 1070 132 1120 858	756 660 549 530 21 494 21 549 399	- - - - -	<2 0.55 <1 <1 0.75 <1 0.75 <1 0.75 <1 0.56	246 226 103 108 3.95 95.1 3.95 108 78	233 - - - - - - - -	2510 2303 1240 1390 25.8 1340 25.8 1390 999	- - - - -	6838 4510 997 4790 4510 997 4790 3702
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D1 D1 D	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6	14400 12020 8740 9360 8590 8310 8310 9360 8750	<1 0.5 - <1 <1 <1 <1 <1 - -	207 197 127 116 154 184 116 184 145	207 204 - 116 154 184 116 184 151	<1 0.5 - - <1 <1 <1 <1 - <1 - <1 - <1 - <1 - <	535 467 591 584 29.9 510 29.9 591 429 81.1		2000 1615 1110 132 1120 1070 132 1120 858 86.4	756 660 549 530 21 494 21 549 399 64.4	- - - - - -	<2 0.55 <1 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2	246 226 103 108 3.95 95.1 3.95 108 78	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999	- - - - - -	6838 4510 997 4790 4510 997 4790 3702 590
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D2 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_22 Oct 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78	14400 12020 8740 9360 8590 8310 9360 8750 1000 910	<1 0.5 - <1 <1 <1 <1 <1 - - - - - - - - - - -	207 197 127 116 154 184 116 184 145 15 8	207 204 - 116 154 184 116 184 151 -	<1 0.5 - <1 <1 <1 <1 - -	535 467 591 584 29.9 510 29.9 591 429 81.1 68.1		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84	756 660 549 530 21 494 21 549 399 64.4 58.6	- - - - - - -	<2 0.55 <1 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105	246 226 103 108 3.95 95.1 3.95 108 78 14.8	233 - - - - - - - - - -	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141	- - - - - - -	6838 4510 997 4790 4510 997 4790 3702 590 572
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D1 D2 D2 D2 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_22 Oct 20_ D2_12 Nov 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78	14400 12020 8740 9360 8590 8310 9360 8750 1000 910 732	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	207 197 127 116 154 184 116 184 145 15 8	207 204 - 116 154 184 116 184 151 -	<1 0.5 - <1 <1 <1 <1 - -	535 467 591 584 29.9 510 29.9 591 429 81.1 68.1 51.1		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6	- - - - - -	<2 0.55 <1 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1	246 226 103 108 3.95 95.1 3.95 108 78 14.8 15.6 11.4	233 - - - - - - - - - - - - -	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119	- - - - - -	6838 4510 997 4790 4510 997 4790 3702 590 572 366
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D2 D2 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 5.8	14400 12020 8740 9360 8590 8310 9360 8750 1000 910 732 567	<1 0.5 - <1 <1 <1 <1 <1 <1 - <1 <	207 197 127 116 154 184 116 184 145 15 8 14	207 204 - 116 154 184 116 184 151 - 30	<1 0.5 <1 <1 <1	535 467 591 584 29.9 510 29.9 591 429 81.1 68.1 51.1 36.1		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7	-	<2 0.55 <1 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124	246 226 103 108 3.95 95.1 3.95 108 78 14.8 15.6 11.4	233	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6	-	6838 4510 997 4790 4510 997 4790 3702 590 572 366 291
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D1 D2 D2 D2 D2 D2 D2 D2 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_22 Oct 20_ D2_12 Nov 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 5.8 5.87	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	207 197 127 116 154 184 116 184 145 15 8 14 30	207 204 - 116 154 184 116 184 151 30 14	<1 0.5 <1 <1 <1	535 467 591 584 29.9 510 29.9 591 429 81.1 68.1 51.1 36.1 52.4		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7	-	<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162</pre>	246 226 103 108 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4	-	6838 4510 997 4790 4510 997 4790 3702 590 572 366 291 390
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min.	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 5.87 5.87 5.85	14400 12020 8740 9360 8590 8310 9360 8750 1000 910 732 567 712	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	207 197 127 116 154 184 116 184 145 15 8 14 30 14	207 204 - 116 154 184 116 184 151 30 14	<1 0.5	535 467 591 584 29.9 510 29.9 591 429 81.1 68.1 51.1 36.1 52.4 36.1		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2	-	<2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1	246 226 103 108 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94	233	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6	-	6838 4510 997 4790 4510 997 4790 3702 590 572 366 291 390 291
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 12/02/2021 2005/2021 Min. Max.	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790	5.92 6.04 5.95 5.84 5.91 5.92 5.84 5.95 -6.6 5.78 5.87 5.87 5.87 5.87 6.66	14400 12020 8740 9360 8590 8310 9360 8750 1000 910 732 567 712 567 1000	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8	207 204 - 116 154 184 116 30 14 14 30	<1 0.5	535 467 591 584 29.9 510 29.9 591 429 81.1 68.1 51.1 36.1 52.4 36.1 81.1	-	2000 1615 1110 132 1120 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 86.4	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4	-	<2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.2	246 226 103 108 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6	-	6838 4510 997 4790 4510 997 4790 3702 590 572 366 291 390 291 590
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 5.87 5.87 5.85	14400 12020 8740 9360 8590 8310 9360 8750 1000 910 732 567 712 567 1000 784	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8	207 204 - 116 154 184 116 184 151 1 30 14	<1 0.5 - <1 <1 <1 - - - - - - - - - - - - - -	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 81.1 52.4 36.1 81.1		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 86.4 66	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4	-	<2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.105 <0.1 0.124 0.162 <0.1 <0.2 0.105	246 226 103 108 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 15.6 13	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141	-	6838 4510 997 4790 4510 997 4790 3702 590 572 366 291 590 291 590 442
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 5.87 5.85 5.87 5.85 5.78 6.6	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 1000 784 260	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8 30	207 204 - 116 154 184 116 184 151 - - 30 14 14 14 30	<1 0.5	535 467 591 584 29.9 510 29.9 591 429 81.1 51.1 36.1 52.4 36.1 81.1 58	-	2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 86.4 66	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4 47	-	<2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	246 226 103 108 3.95 95.1 3.95 108 78 11.4 8.94 12.4 8.94 15.6 13 3.11	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103	-	6838 4510 997 4790 4790 3702 590 592 366 291 390 291 590 442 123
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 16/07/2020 22/10/2020 21/02/2021 20/05/2021 Alin. Max. Average 17/09/2020 26/11/2020	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_22 Oct 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 5.87 5.85 5.87 5.85 5.78 6.6	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 1000 784 260 194	<1 0.5	207 197 127 116 154 116 184 145 15 8 14 30 14 8 30 16 14	207 204	<1 0.5 	535 467 591 584 29.9 510 29.9 591 429 81.1 36.1 52.4 36.1 81.1 58 25		2000 1615 1110 132 1120 1070 132 1120 858 86.4 54.3 45.6 61.4 45.6 86.4 66 14.4	756 660 549 530 21 494 21 549 399 64.4 43.2 31.7 43.2 31.7 64.4 47		<2 0.55 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.05 <0.05	246 226 103 108 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 15.6 13 3.11	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 590 422 123 94.3
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 11/09/2020 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/02/2021	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_ D8_15 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211	5.92 6.04 - - 5.95 5.84 5.91 5.92 - 6.6 5.78 5.8 5.87 5.87 5.87 5.87 5.87 5.87	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 1000 784 260 194 378	41 0.5 41 42 44	207 197 127 116 154 1184 116 184 145 15 8 14 30 14 8 30 14 14 12	207 204	<1 0.5 	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 81.1 52.4 36.1 81.1 58 25 15.1		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 66.1 45.6 86.4 66.4 47.3	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 64.4 47 18		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.105 <0.1 0.105 <0.1 0.124 0.162 <0.1 <0.2 0.105 <0.1 0.200 0.37</pre>	246 226 103 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 15.6 13 3.11 12.36	233 	2510 2303 1240 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103 15.72		6838 4510 997 4790 4790 3702 590 572 366 291 590 291 590 442 142 142 169
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_22 Oct 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474	5.92 6.04 - 5.95 5.84 5.91 5.95 - 6.6 5.78 5.87 5.87 5.88 5.87 6.6 - 5.58 5.58 5.58	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 1000 784 260 194 378 349	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	207 197 127 116 154 184 116 184 145 30 14 8 30 16 14 12 14	207 204	<1 0.5	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 81.1 58 25 195.4 29.5		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 61.4 45.6 61.4 23.3 23.3	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4 47 18 11 81		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.05 <0.07 <0.05 <0.07 /pre>	246 226 103 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 12.4 8.94 15.6 13 3.11 2.36 16.7	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103 15.1 5.72 181 30.9		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 123 94.3 169 172
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 25/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min.	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_ D8_15 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 6.6 - 5.78 6.6 - 5.78 6.6 5.78 5.85 5.87 5.85 5.87 5.85 5.87 5.95 5.87 5.95 5.87 5.87 5.95 5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.8	14400 12020 8740 9360 8590 8310 9360 8750 1000 910 732 567 712 567 712 567 712 567 32 349 194	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8 30 16 14 12 14 12	207 204 116 154 184 116	<1 0.5	535 467 591 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 81.1 58 25 15.1 95.4		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 45.6 61.4 45.6 86.4 45.6 66 14.4 4.73 23.3 25.2 4.73	756 660 549 530 21 494 21 549 399 64.4 58.6 31.7 43.2 31.7 64.4 47 18 11 81 21.1		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.05 <0.02 0.017 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.02 <0.03 <0.02 <0.03 <0.05 <0.02 <0.03 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.03 /pre>	246 226 103 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 12.4 8.94 12.4 8.94 12.4 8.94 14.8 15.6 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 66.6 93.4 66.6 141 103 15.1 5.72 181 30.9		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 590 442 123 94,3 169 172 94,3
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_ D8_15 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474	5.92 6.04 - 5.95 5.84 5.91 5.95 - 6.6 5.78 5.87 5.87 5.88 5.87 6.6 - 5.58 5.58 5.58	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 1000 784 260 194 378 349	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	207 197 127 116 154 184 116 184 145 30 14 8 30 16 14 12 14	207 204	<1 0.5	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 81.1 58 25 195.4 29.5		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 61.4 45.6 61.4 23.3 23.3	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4 47 18 11 81		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.05 <0.07 <0.05 <0.07 /pre>	246 226 103 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 12.4 8.94 15.6 13 3.11 2.36 16.7	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103 15.1 5.72 181 30.9		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 123 94.3 169 172
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 25/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min.	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_ D8_15 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 6.6 - 5.78 6.6 - 5.78 6.6 5.78 5.85 5.87 5.85 5.87 5.85 5.87 5.95 5.87 5.95 5.87 5.87 5.95 5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.8	14400 12020 8740 9360 8590 8310 9360 8750 1000 910 732 567 712 567 712 567 712 567 32 349 194	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8 30 16 14 12 14 12	207 204 116 154 184 116	<1 0.5	535 467 591 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 81.1 58 25 15.1 95.4		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 45.6 61.4 45.6 86.4 45.6 66 14.4 4.73 23.3 25.2 4.73	756 660 549 530 21 494 21 549 399 64.4 58.6 31.7 43.2 31.7 64.4 47 18 11 81 21.1		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.05 <0.02 0.017 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.02 <0.03 <0.02 <0.03 <0.05 <0.02 <0.03 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.03 /pre>	246 226 103 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 12.4 8.94 12.4 8.94 12.4 8.94 14.8 15.6 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 66.6 93.4 66.6 141 103 15.1 5.72 181 30.9		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 590 442 123 94,3 169 172 94,3
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_ D8_15 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211	5.92 6.04 - 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 6.6 - 5.78 6.6 - 5.78 6.6 5.78 5.87 5.85 5.87 5.85 5.87 5.85 5.87 5.85 5.95 5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.8	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 1000 784 260 194 378 349 194 378	<1 0.5 - <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8 30 14 14 12 14	207 204 116 154 184 116 151 30 14 14 30 12 14 13 12	C C C C C C C C	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 81.1 58 25 15.1 95.4 29.5		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 86.4 66 14.4 4.73 23.3 25.2	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4 47 18 11 81 21.1 81		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.02 0.037 <0.02 <0.037 <0.02 <0.02 <0.05</pre>	246 226 103 3.95 95.1 3.95 108 14.8 15.6 11.4 8.94 12.4 8.94 15.6 13 3.11 2.36 16.7 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 141 119 96.7 66.6 93.4 66.6 141 103 15.1 5.72 181		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 590 291 390 291 123 94.3 169 172
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 11/09/2020 12/11/2020 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/02/2021 12/03/2020 15/04/2020 15/04/2021 15/04/2021 15/06/2021 Min. Max. Average	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_ D8_15 Apr 21_ D8_25 Jun 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211 477 380	5.92 6.04 	14400 12020 8740 9360 8590 8310 9360 8750 1000 732 567 712 567 1000 784 260 194 378 349 194 378 295	41 0.5 	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8 30 14 14 12 14 13 12 14	207 204	c1 0.5 . c1 c2	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 81.1 52.4 36.1 81.1 59.4 25 15.1 95.4 29.9		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 66 14.4 4.73 23.3 25.2 4.73 25.2 17	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4 47 18 11 81 21.1 11 81		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.05 <0.02 0.037 <0.05 <0.05 <0.05 <0.05 <0.05</pre>	246 226 108 3.95 95.1 3.95 108 78 14.8 14.8 11.4 8.94 12.4 8.94 15.6 13 3.11 2.36 16.7 4.16 2.36 16.7	233 	2510 2303 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103 15.7 181 30.9 5.72 181		6838 4510 997 4790 4790 590 572 366 291 390 291 590 442 123 94.3 169 172 94.3
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2 D2 D2 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_15 Apr 21_ D8_25 Jun 21_ D9_16 Sep 20_ D9_16 Sep 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211 477 380 8410	5.92 6.04 - 5.95 5.84 5.91 5.95 - 6.6 5.78 5.87 5.88 5.87 6.66 - 5.58 5.78 5.58 5.79 6.66 - 6.57 6.66 - 6.66 - 6.66 - 6.72 - 6.72 - 6.66 - 6 -	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 11000 784 260 194 378 349 194 378 295 7260	C C C C C C C C	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8 30 14 14 12 14 13 12 14 13	207 204	41 0.5 - 41 41 41 - 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 52.4 36.1 51.1 51.1 58 25 15.1 95.4 41 629		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 61.4 45.6 61.4 47.3 23.3 25.2 4.73 25.2 17	756 660 549 530 21 494 21 549 399 64.4 58.6 31.7 43.2 31.7 64.4 47 18 11 81 21.1 11 81 33		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.05 <0.02 0.005 <0.02 <0.05 <0.02 <0.05 /pre>	246 226 103 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 12.4 8.94 15.6 13 3.11 2.36 16.7 6.6 68.5	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103 15.1 5.72 181 30.9 5.72		6838 4510 997 4790 4510 997 3702 590 572 366 291 390 291 123 94.3 169 172 94.3 172 140 3480
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 16/09/2020 25/11/2020	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_12 Nov 20_ D2_12 Feb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_26 Nov 20_ D8_15 Apr 21_ D8_25 Jun 21_ D9_16 Sep 20_ D9_25 Nov 20_ D9_25 Nov 20_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211 477 380 8410 9900	5.92 6.04 - 5.95 5.84 5.91 5.92 - 6.6 5.78 5.87 5.85 5.78 6.6 - - 5.558 5.558 5.49 5.72 5.53 5.49 5.72	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 71000 784 260 194 378 349 194 378 349 194 378 9410	Column C	207 197 127 116 154 184 116 184 145 15 8 14 30 14 8 30 16 14 12 14 12 14 13 12 14 13	207 204	c1 0.5 . c1 c2 c3 c4 c5 c6 c7 c7 c8 c9 c9 c9 c9 c1 c2	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 81.1 58 25 15.1 95.4 29.5 15.1 95.4 41 62.9		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 45.6 61.4 45.6 86.4 47.2 23.3 25.2 4.73 25.2 1260	756 660 549 530 21 494 21 549 399 64.4 58.6 31.7 43.2 31.7 64.4 47 18 11 81 21.1 11 81 33 488		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.102 0.102 0.102 <0.1 <0.124 0.162 <0.1 <0.05 <0.02 0.05 <0.02 0.05 <0.02 0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05</pre>	246 226 103 108 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 15.6 13 3.11 2.36 16.7 4.16 2.36 16.7 6.6 68.5	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103 15.1 5.72 181 5.72 181 5.72		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 590 442 123 94,3 169 172 94.3 172 172 172 1480 4600
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D1 D	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 17/09/2020 25/11/2020 25/11/2020 25/11/2020 25/11/2020 25/11/2020 25/11/2020 25/11/2020	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_22 Oct 20_ D2_12 Reb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_15 Apr 21_ D8_25 Jun 21_ D9_16 Sep 20_ D9_25 Nov 20_ D9_14 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211 477 380 8410 9900 8620	5.92 6.04 5.95 5.84 5.91 5.92 5.84 5.95 - 6.6 5.78 5.8 5.87 5.85 5.78 6.6 - - - - - - - - - - - - - - - - - -	14400 12020 8740 9360 8590 8310 8310 8310 9160 8750 1000 910 732 567 712 567 1000 784 260 194 378 295 7260 9410 7860	Columbia 207 197 127 116 154 184 116 145 15 8 14 8 30 14 8 30 14 12 14 12 14 13 12 14 13	207 204	c1 0.5 . c1 c2 c3 c4 c4 c4 c4 c4 c4	535 467 591 598 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 81.1 58 25 15.1 95.4 29.9 41.1 68.1 51.1 68.1 51.1 68.		2000 1615 1110 132 1120 138 86.4 84 54.3 45.6 61.4 45.6 86.4 66 14.4 4.73 23.3 25.2 17 92 1260 1080	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4 47 18 11 81 21.1 81 33 488 520		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.105 <0.1 0.124 0.162 <0.1 <0.05 <0.02 0.03 <0.02 <0.05 <0.02 <0.05 <0.02 <0.03 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.024 <1 0.045 <0.045 <0.045</pre>	246 226 103 3.95 95.1 3.95 108 14.8 15.6 11.4 8.94 12.4 8.94 12.4 8.94 12.4 8.94 15.6 13 3.11 2.36 16.7 6.6 6.6 6.6 6.5 79.5	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.6 93.4 66.6 141 103 15.1 5.72 181 30.9 95.72		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 390 291 123 94.3 169 172 140 3480 4600 4270	
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2 D2 D2 D2	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 22/10/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 11/09/2020 25/11/2020 15/04/2021 25/06/2021 Min. Max. Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min.	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_22 Oct 20_ D2_12 Reb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_15 Apr 21_ D8_25 Jun 21_ D9_16 Sep 20_ D9_25 Nov 20_ D9_14 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211 477 380 8410 9900 8620 10,330 8410	5.92 6.04 - 5.95 5.84 5.91 5.95 - 6.6 5.78 5.87 5.88 5.87 5.85 5.78 6.6 - 5.72 5.53 5.49 5.72 - 6.08 6.15	14400 12020 8740 9360 8590 8310 8310 9360 8750 1000 910 732 567 712 567 1000 784 260 194 378 349 194 378 349 194 378 395 7260 9410 7860 9310 7260	C C C C C C C C	207 197 127 116 154 184 116 158 14 30 14 8 30 14 14 12 14 13 12 14 13 12 15 78	207 204	c1 0.5 . c1 c2 c3 c4 c5 c6	535 467 591 584 29.9 510 29.9 81.1 68.1 51.1 36.1 52.4 36.1 52.4 36.1 52.4 36.1 52.4 36.1 52.4 36.1 52.4 36.1 68.1		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 66 14.4 4.73 23.3 25.2 4.73 25.2 17 925 1260 1080 1390 925	756 660 549 530 21 494 21 549 399 64.4 58.6 31.7 43.2 31.7 43.2 31.7 18 11 81 21.1 11 81 33 488 520 459		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.75 <1 0.56 <0.2 0.102 0.162 <0.1 0.124 0.162 <0.1 <0.05 <0.02 0.037 <0.05 <0.02 <1 0.045 3.24 <1 0.045</pre>	246 226 103 3.95 95.1 3.95 108 78 14.8 15.6 11.4 8.94 12.4 8.94 12.4 8.94 15.6 13 3.11 2.36 16.7 4.16 2.36 68.5 79.5 71.1 105 68.5	233 	2510 2303 1240 1390 25.8 1340 25.8 1390 999 141 119 96.7 66.6 93.4 66.6 141 103 15.1 5.72 181 30.9 5.72 181 194 195 196 196 196 196 196 196 196 196 196 196		6838 4510 997 4790 4510 997 3702 590 572 366 291 390 291 123 94.3 169 172 94.3 172 140 3480 4600 4270 5140
Adjacent to MPAR and Downgradient	D107 D1 D1 D1 D1 D1 D1 D2 D8 D8 D8 D8 D8 D8 D8 D8 D9 D9 D9 D9 D9 D9 D9 D9 D1 D1 D2 D2 D3 D4 D5 D6 D7 D8 D8 D8 D8 D9 D9 D9 D9 D9 D9 D9 D9 D9 D1 D1 D2 D2 D3 D4 D5 D6 D7 D7 D8 D8 D8 D9 D9	Average 16/09/2020 25/11/2020 14/04/2021 23/06/2021 Min. Max. Average 16/07/2020 12/11/2020 12/11/2020 12/11/2020 12/02/2021 20/05/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 17/09/2020 26/11/2020 15/04/2021 25/06/2021 Min. Max. Average 16/09/2020 25/11/2020 14/04/2021 25/06/2021	D1_25 Nov 20_ D1_14 Apr 21_ D1_23 Jun 21_ D2_16 Jul 20_ D2_22 Oct 20_ D2_12 Reb 21_ D2_20 May 21_ D8_17 Sep 20_ D8_15 Apr 21_ D8_25 Jun 21_ D9_16 Sep 20_ D9_25 Nov 20_ D9_14 Apr 21_	15330 13623 9810 9920 9140 9290 9140 9920 9540 1460 1320 1050 790 1030 790 1460 1130 358 211 474 477 211 477 380 8410 9900 8620 10,330	5.92 6.04 - - 5.95 5.84 5.91 5.92 - - 6.6 5.78 5.8 5.87 5.87 5.87 5.87 5.87 5.87	14400 12020 12020 8590 8310 9360 8590 8310 9360 8750 1000 732 567 712 567 1000 784 260 194 378 349 194 378 295 7260 9410 7860	d1	207 197 127 116 154 184 116 184 145 15 8 14 8 30 14 8 30 14 12 14 13 12 14 13 12 14 13 12 15	207 204	c1 0.5 . c1	535 467 591 584 29.9 510 29.9 81.1 68.1 36.1 52.4 36.1 52.4 36.1 51.1 58 25 15.1 95.4 29.5 15.1 95.4 29.5 15.1 96.6 66.5 66.5 66.5 66.5		2000 1615 1110 132 1120 1070 132 1120 858 86.4 84 54.3 45.6 61.4 45.6 66 14.4 4.73 23.3 25.2 4.73 25.2 17 925 1260 1080	756 660 549 530 21 494 21 549 399 64.4 58.6 38.6 31.7 43.2 31.7 64.4 47 18 11 81 21.1 11 81 33 488 520 459 579		<pre><2 0.55 <1 0.75 <1 0.75 <1 0.56 <0.2 0.10 0.124 0.162 <0.1 0.02 0.037 <0.05 <0.02 0.037 <0.05 <0.05 <0.02 <0.05 <0.</pre>	246 226 108 3.95 95.1 3.95 108 78 14.8 14.8 15.6 13 3.11 2.36 16.7 4.16 2.36 16.7 4.16 2.36 79.5 79.5 71.1 105	233	2510 2303 1340 25.8 1340 25.8 1390 999 141 1996.7 66.6 141 103 15.1 5.72 181 30.9 5.72 181 30.9 5.72		6838 4510 997 4790 4510 997 4790 590 572 366 291 390 291 390 442 123 94.3 169 172 140 3480 4600 4270 5140

				Field Para	meters	TDS							Majo	r Anions	and Catio	ns					
				So Electrical Conductivity (Field)	(Pleigh Hd pH units	Total Dissolved Solids (TDS)	Z (Sarbonate (as CaCO3)	m Total Alkalinity (as CaCO3)	(m) Bicarbonate Alkalinity (as CaCO3)	Phenolphthalein Alkalinity (CaCO3)	Z/ Calcium	7/8m (Filtered)	T/8w	Magnesium mg/L	Magnesium (Filtered)	Mg/L	Mg/L	Dotassium (Filtered)	ws.pog.	7/8w (Filtered)	Sulfate (as 504)
ANZECC (2000) or Local Guidelines - Groundwater				2600	6.5-8	2000							350			1.5					1000
Purpose	LocCode	Sampled_Date-Time	SampleCode																		
Adjacent to MPAR and Downgradient	D102	12/08/2020	MPW035281	10,330	6.08	9340	-	144	Ι -	<1	747	626	1390	560	476	0.089	88.3	73.6	1310	1130	5080
Adjacent to MPAR and Downgradient	D102	11/11/2020	D102_11 Nov 20_	10,420	6.06	9520	<1	141	141	<1	713	612	1430	615	513	0.066	120	96.5	1440	1200	5270
Adjacent to MPAR and Downgradient	D102	18/02/2021	D102_18 Feb 21_	10,140	6.07	9220	<1	125	125	<1	547	-	1330	531	-	<1	90.6	-	1340	-	4400
Adjacent to MPAR and Downgradient	D102	11/06/2021	D102_11 Jun 21_	10,190	6.1	9110	<1	129	129	<1	518	-	1410	551	-	<2	99	-	1430	-	4610
	D102	Min.		10140	6.06	9110	<1	125	125	<1	518	612	1330	531	476	0.066	88.3	73.6	1310	1130	4400
	D102	Max.		10420	6.1	9520	<1	144	141	<1	747	626	1430	615	513	<2	120	96.5	1440	1200	5270
	D102	Average		10270	-	9298	0.5	135	132	0.5	631	-	1390	564	-	0.41	99	-	1380	-	4840
Adjacent to MPAR and Downgradient	D103	12/08/2020	MPW035282	4910	6.13	4230		155	- 470	<1	278	234	350	261	222	0.073	37.5	31.9	592	513	2590
Adjacent to MPAR and Downgradient	D103	11/11/2020 17/02/2021	D103_11 Nov 20_	4710 4540	6.14	3980 3890	<1	178	178 162	<1	256	236	317 314	254 216	223	0.056 <0.5	42.7 35.2	35.8	583 552	516	2390 2300
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D103	11/06/2021	D103_17 Feb 21_ D103_11 Jun 21	4190	6.22	3550	<1 <1	162 188	188	<1	212	-	272	198	-	<0.5	35.2	-	535	-	1960
Adjacent to MPAK and Downgradient	D103	Min.	D103_11 Juli 21_	4190	6.13	3550	<1	155	162	<1	212	234	272	198	222	0.056	35.2	31.9	535	513	1960
	D103	Max.		4910	6.22	4230	<1	188	188	<1	278	236	350	261	223	<0.5	42.7	35.8	592	516	2590
	D103	Average		4588	-	3913	0.5	171	176	0.5	240	-	313	232	-	0.16	38	-	566	-	2310
Adjacent to MPAR and Downgradient	D104	12/08/2020	MPW035283	1120	5.74	824	-	51	-	<1	84.2	72.6	65.6	54.4	47.4	0.024	8.65	7.52	78.5	70.6	430
Adjacent to MPAR and Downgradient	D104	11/11/2020	D104_11 Nov 20_	910	5.88	670	<1	52	52	<1	56.1	54.5	47.4	36.9	34.2	0.013	8.29	7.58	86.6	81.2	344
Adjacent to MPAR and Downgradient	D104	18/02/2021	D104_18 Feb 21_	1760	5.76	1400	<1	48	48	<1	113	-	109	82.1	-	<0.2	11.8	-	130	-	754
Adjacent to MPAR and Downgradient	D104	11/06/2021	D104_11 Jun 21_	1420	5.66	990	<1	41	41	<1	106	-	93.6	70.8	-	<0.2	10.7	-	106	-	584
	D104	Min.		910	5.66	670	<1	41	41	<1	56.1	54.5	47.4	36.9	34.2	0.013	8.29	7.52	78.5	70.6	344
	D104	Max.		1760	5.88	1400	<1	52	52	<1	113	72.6	109	82.1	47.4	<0.2	11.8	7.58	130	81.2	754
Adjacent to MADAD and Daymaradient	D104	Average	MPW035284	1 303 3930	6.04	9 71 3200	0.5	48 160	47	0.5	90 271	- 251	79 302	61 247	-	0.059 0.074	9.9	25.5	100	- 221	528 1980
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D105	13/08/2020 11/11/2020	D105 11 Nov 20	3670	6.03	3030	<1	146	146	<1	245	251 212	272	239	232	<0.5	27.1 29.2	25.4	338 324	321 279	1840
Adjacent to MPAR and Downgradient	D105	17/02/2021	D105_11 NOV 20_	3960	6.06	3230	<1	146	146	<1	220	-	284	216	-	<0.5	26.3	-	320	-	1820
Adjacent to MPAR and Downgradient	D105	11/06/2021	D105_17 Feb 21_	3570	6.05	3000	<1	149	149	<1	233	-	267	214	-	<0.5	26.8	-	325	-	1650
	D105	Min.		3570	6.03	3000	<1	146	146	<1	220	212	267	214	204	0.074	26.3	25.4	320	279	1650
	D105	Max.		3960	6.06	3230	<1	160	149	<1	271	251	302	247	232	<0.5	29.2	25.5	338	321	1980
	D105	Average		3783	-	3115	0.5	150	147	0.5	242	-	281	229	-	0.21	27	-	327	-	1823
Brine waste pond leak detection bores	MPGM5-D5	16/07/2020	MPGM5-D5_16 Jul 20_	21,890	5.96	20,800	-	420	-	-	332	-	2060	1140	-	<2	134	-	4400	-	13,000
Brine waste pond leak detection bores	MPGM5-D5	22/10/2020	MPGM5-D5_22 Oct 20_	21,790	6.01	23,000	-	570	-	-	526	-	2030	1390	-	0.932	132	-	4690	-	13,600
Brine waste pond leak detection bores	MPGM5-D5	12/11/2020	MPGM5-D5_12 Nov 20_	18,400	6.08	18,600		497	- 242	-	314	-	1880	1070	-	<2	107	-	3450	-	11,800
Brine waste pond leak detection bores	MPGM5-D5 MPGM5-D5	12/02/2021 20/05/2021	MPGM5-D5_12 Feb 21_ MPGM5-D5_20 May 21	13,550 23,440	5.89 6.38	13,000 22,200	<1	312 1110	312 1110	<1	360 384	-	1620 2210	1070 990	-	0.507 <1	59.4 193	-	2430 6120	-	8910 12,700
Brine waste pond leak detection bores	MPGM5-D5	Min.	INFGINIS-DS_20 INIAY 21_	13550	5.89	13000	<1 <1	312	312	<1	314	-	1620	990	-	0.507	59.4	-	2430	<u> </u>	8910
	MPGM5-D5	Max.		23440	6.38	23000	<1	1110	1110	<1	526	-	2210	1390	-	<2	193	-	6120	-	13600
	MPGM5-D5	Average		19814	-	19520	-	582	-	T-	383	-	1960	1132	-	0.79	125	-	4218	-	12002
Brine waste pond leak detection bores	MPGM5-D6	16/07/2020	MPGM5-D6_16 Jul 20_	1570	5.68	945	-	113	-	-	20.3	-	161	46.4		<0.2	6.38	-	195	-	428
Brine waste pond leak detection bores	MPGM5-D6	22/10/2020	MPGM5-D6_22 Oct 20_	1460	5.66	955	-	110	-	-	19.8	-	141	43.1	-	<0.1	7.3	-	172	-	371
Brine waste pond leak detection bores	MPGM5-D6	20/05/2021	MPGM5-D6_20 May 21_	1290	5.8	762	<1	139	139	<1	17.9	-	135	41.4	-	<0.1	6.14	-	155	-	279
	MPGM5-D6	Min.		1290	5.66	762	<1	110	139	<1	17.9	-	135	41.4	-	<0.1	6.14	-	155	-	279
	MPGM5-D6	Max.		1570	5.8	955	<1	139	139	<1	20.3	-	161	46.4	-	<0.2	7.3	-	195	-	428
	MPGM5-D6	Average		1440	-	887	<u> </u>	121	<u> </u>	-	19	-	146	44	-	0.067	6.6	-	174	-	359

M																	Me	tals													
					Ģ										⊕							(pa			ered)			_			
					ltere		(pa		(pa		ਚ		ered		Itere	(g				_		ilter			E		g	a d		<u> </u>	
				E	E (F		Filter		il il il il	.	iltere	_	<u>i</u>	ε	E E	Filter		ered)		tered	ese	ese (F		E	E		iltere	_ #	.	Itere	
				m minit	minic	Buic	enic (<u> </u>) Hi	, s	on (F	l in	l ii	om in	omiu Der	ber (_	E E	_		ngane	ngane	rany	lybde	lybde	<u>ē</u>	cel (F		- L	er (Fi	,
				₽ F	NA.	Arse	Arse	Bar	Bar		8	, Ca	8	<u> </u>	<u> </u>	8	<u>ē</u>	<u>ē</u>	lea l	e le	<u>ε</u> Σ	ξ.	ğ.	₹	2	호	호	N S	, Sign	- i	Zinc
ZECC (2000) or Local Guidelines - Groundwater				μg/L	μg/L		μg/L 24	μg/L 700	ıg/L μg 700 10				μg/L 2		μg/L μg, 5 5			μg/L 664	μg/L μ			μg/L 5704	μg/L 0.06	μg/L 10			μg/L μ 550.9		/L μg/L 0.05		μg/L μ 908 9
pose	LocCode	Sampled_Date-Time	SampleCode																												
hin MPAR / Mine Disturbance Area East of MPAR	D10	17/09/2020	D10_17 Sep 20_	110	-	2	-	20		1020) -	0.9	-	<1	- 1	-	-	12,300	32	-	- 2	2740	<0.04	2	-	367	- ().6 -	<1	- 6	621
thin MPAR / Mine Disturbance Area East of MPAR thin MPAR / Mine Disturbance Area East of MPAR	D10	26/11/2020 17/03/2021	D10_26 Nov 20_ D10_17 Mar 21	70 40	60 10	8 4	2	16 18	- <			0.1	-	1 <1	- <1	_	15,600 12,000	15,300 6850	7			2930 3540	<0.04	4	-	_).8 -).4 -	<1		391 3 299 2
thin MPAR / Mine Disturbance Area East of MPAR	D10	30/06/2021	D10_17 Mai 21_ D10_30 Jun 21_	50	40	2	1	21	- <				-	15	- <1	_	16,000	12,900				2850	<0.04	17	-).4 -	<1		44
	D10 D10	Min.		40 110	10 60	8	8	16 21	- <				-	<1 15	- <1		12000 16000	6850 15300	3 32			-	<0.04 <0.04	2 17	-	_).4 -).8 -	<1		44 : 621 :
	D10	Max. Average		68	37		3.7	19	- < - 0.			0.3	-	4.3	- 1 - 0.6	_	14533	11838	13			3015	0.02	6.8	-	_		.55 -	0.5		339 2
thin MPAR / Mine Disturbance Area East of MPAR thin MPAR / Mine Disturbance Area East of MPAR	D11 D11	17/09/2020	D11_17 Sep 20_	1480	- <10	3	-	56 94			_	<0.1 <0.1	-	<1	- <1	_	- 102 000	46,700	<1			4,800 4,000	<0.04	<1 0		879).5 -).3 -	<1		28
itimi wran / wille disturbalice area East of MPAK	D11 D11	30/06/2021 Min.	D11_30 Jun 21_	40 40	<10 <10	6 3	6 6	56	- <			<0.1 <0.1	-	<1	- <1	<1 <1	102,000 102000	83,100 46700					<0.04	9 <1	-).3 -	<1		23
	D11	Max.		1480	<10	6	6	٠.	- <	_		<0.1	-	<1	_	<1	102000	83100	<1				<0.04	9).5 -			28
ithin MPAR / Mine Disturbance Area East of MPAR	D11	16/09/2020	D19 16 Sep 20	760	-	4.5	-	75				0.1	-	6	- 0.	_	-	64900 16,800	0.5 8	_		4400 1990	<0.04	4.75	-	859 426).4 -	0.5		25.5 223
thin MPAR / Mine Disturbance Area East of MPAR	D19	26/11/2020	D19_26 Nov 20_	210	<10	3	1	16	- <	1 166	1560	0.1	-	2	- 5		14,200	10,900	_			1830	<0.04	<1	-	454).3 -	<1		239 2
thin MPAR / Mine Disturbance Area East of MPAR thin MPAR / Mine Disturbance Area East of MPAR	D19	15/04/2021 24/06/2021	D19_15 Apr 21_ D19_24 Jun 21_	10 340	<10 <10	<1 4	1 1	11 17	- <			<0.1 0.1	-	<1 32	- <1		17,400 17,200	12,100 14,000	-			5220	<0.04	<1 1	_	_	-	0.2 - 0.2 -	<1		196 2 260 2
	D19	Min.		10	<10	<1	1	11	- <	1 153	1560	<0.1	-	<1	- <1	. <1	14200	10900	2		010 4	1830	<0.04	<1	-	424	437 <	0.2 -	<1	- 1	196 2
	D19	Max. Average		430 248	<10 5	2.6	1		- < - 0.				-	32 10	- 5 - 2.		17400 16267	16800 13450		_		5220 5030	<0.04 0.02	0.63	-).4 - .23 -			260 2 230 2
hin MPAR / Mine Disturbance Area East of MPAR	D113	12/08/2020	MPW035292	-	-	8	2	18	11 -	171	1630	1.8	0.1	7	<1 5	<1	14,100	13,600	7	2 63	180 5	5960	<0.04	<1	<1	465	446 <	0.2 <0	2 <1	<1 2	288 2
thin MPAR / Mine Disturbance Area East of MPAR thin MPAR / Mine Disturbance Area East of MPAR	D113 D113	11/11/2020 17/02/2021	D113_11 Nov 20_ D113_17 Feb 21	170 150	<10 <10	1	1 <1	13	10 <				0.1	7	<1 <1		13,700 13,300	11,500 13,200	5	_		5120 5390	<0.04	<1 <1	_		-	0.2 0.	3 <1 <1		267 2 297 2
thin MPAR / Mine Disturbance Area East of MPAR	D113	24/06/2021	D113_24 Jun 21_	140	<10	1	1	-	- <				-	23	- 2		14,200	13,200	_			5580	<0.04	1				0.2 -			264 2
	D113	Min. Max.		140 170	<10 <10	8	<1 2	_	10 <			0.1 1.8	0.1		<1 <1	_	13300 14200	11500 13600	7			5120 5960	<0.04	<1 1	_			0.2 <0 0.2 0.			264 2 297 2
	D113	Average		153	5		1.1	14		5 174			-			0.5				_		5513	0.02	0.63			443 0				279 2
ithin Mine Disturbance Area S & SE of MPAR ithin Mine Disturbance Area S & SE of MPAR	D15	16/09/2020 26/11/2020	D15_16 Sep 20_ D15_26 Nov 20	870 810	- 150	7 7	2	22 16	- 2	180		0.5	-	126 2	- 11 - 6		24,700	25,800 22,800	-	- 18		1950 1790	<0.04	5 <1	-	712	688	1 -	<1		1300 1210 1
ithin Mine Disturbance Area S & SE of MPAR	D15	24/06/2021	D15_24 Jun 21_	340	100	3	2	19	- 1	_		0.4	-	1	- 1		22,700	21,900		_		1380	<0.04	<1	-).2 -	<1		1010 9
	D15	Min.		340 870	100 150	7	2	16 22	- 1 - 2	_		0.2	-	1 126	- 1 - 11		22700 24700	21900 25800		_		1380 1950	<0.04	<1 5	-).2 - 1 -	<1 <1		1010 9 1300 1
	D15	Max. Average		673	-	5.7	-		- 2			0.37	-	43	- 6		23700	23500				1707	0.02	2		703		.63 -	0.5		1173
ithin Mine Disturbance Area S & SE of MPAR ithin Mine Disturbance Area S & SE of MPAR	D16	16/09/2020	D16_16 Sep 20_	10		<1	- 1	10				<0.1	-	6	- <1		- 2000	3960	<1			69 67	<0.04	<1 <1	-	33		0.2 -	<1		12 6
ithin Mine Disturbance Area S & SE of MPAR	D16	26/11/2020 15/04/2021	D16_26 Nov 20_ D16_15 Apr 21_	<10 <10	<10 <10	<1	<1	9 13	- <			<0.1	-	<1	- <1 - <1	_	3060 4250	2620 3630	<1			83	<0.04	<1	-	21 19		0.2 - 0.2 -	<1		<5
ithin Mine Disturbance Area S & SE of MPAR	D16	23/06/2021 Min.	D16_23 Jun 21_	<10	<10	<1	<1	8	- <	_		<0.1	-	5	- <1	_	3360	3200	<1 <1	-	_	55	<0.04	<1	-	16		0.2 -	<1		<5
	D16	Max.		<10 10	<10 <10	<1	<1	13	-	1 <50 1 60		<0.1	-	9	- <1 - <1	<1	3060 4250	2620 3960	-		32	55 83	<0.04	<1 <1	-	16 33		0.2 - 0.2 -	<1 <1		<5 ·
thin Mine Distrutence Avec C 9 CF of MADAD	D16	Average	D17. 16 Sep. 20	6.3	5		0.5		- 0.			0.05	-	5.1		0.5	i	3353			70	69	0.02	0.5				0.1 -	_		5.8
thin Mine Disturbance Area S & SE of MPAR thin Mine Disturbance Area S & SE of MPAR	D17	16/09/2020 26/11/2020	D17_16 Sep 20_ D17_26 Nov 20_	30 <10	<10	<1	2	14	- <	_		<0.1	-	6 <1	- <1	- <1	20,700	13,400 16,100		_		2850 2570	<0.04	<1 <1	-	74		0.2 - 0.2 -	<1		78 76
thin Mine Disturbance Area S & SE of MPAR	D17	15/04/2021	D17_15 Apr 21_	<10	<10	<1	<1	13	- <			<0.1	-	<1	- <1		27,700	19,700		_		2570	<0.04	<1	-	57		0.2 -	<1		68
hin Mine Disturbance Area S & SE of MPAR	D17 D17	23/06/2021 Min.	D17_23 Jun 21_	<10 <10	<10 <10	<1 <1	<1 <1		- <	1 80 1 80		<0.1 <0.1	-	<1	- <1 - <1	<1 <1	24,800 20700	21,200 13400	<1 <1	_		2200	<0.04 < 0.04	<1 <1	-	54 54	-	0.2 - 0.2 -	<1 <1		62 :
	D17	Max.		30	<10	1	2	14	- <	1 130	130	<0.1	-	6	- <1	. <1	27700	21200	<1	- 26	550 2	2850	<0.04	<1	-	84	72 <	0.2 -	<1	- 7	78
thin Mine Disturbance Area S & SE of MPAR	D17	17/09/2020	D18_17 Sep 20_	30	- 5	0.63 14	-	12 670		5 110	_	0.05	-	1.9	- 0.	0.5	24400	17600 1590	0.5			2 548 135	0.02	0.5		4		0.1 - 0.2 -	0.5		71 22
hin Mine Disturbance Area S & SE of MPAR	D18	26/11/2020	D18_26 Nov 20_	50	<10	1		603	- <	1 90	80	<0.1	-	2	- 2	<1		<50	<1	- 4	18	43	<0.04	6	-	5	4 ().5 -	<1	- 3	33
hin Mine Disturbance Area S & SE of MPAR hin Mine Disturbance Area S & SE of MPAR	D18	15/04/2021 25/06/2021	D18_15 Apr 21_ D18_25 Jun 21	20 60	<10 <10	<1 4	<1 2	657 586	- <	1 <50 1 80		<0.1	-	<1 7	- <1		299 570	<50 130				78 94	<0.04	5 7		8		0.2 - 0.2 -	<1		32
	D18	Min.		20	<10	<1	<1	586	- <	1 <50	<50	<0.1	-	<1	- <1	<1	200	<50	<1	- 4	18	43	<0.04	3	-	3	3 <	0.2 -	<1	- 2	22
	D18	Max. Average		60 40	<10 5	14 4.9	1	670 629	- <	1 90 5 61		0.2	-	-	- 2 - 1	<1 0.5	570 356	1590 443				135 88	0.06	7 5.3		5).5 -).2 -			28
kground and Adjacent to MPAR	D3	17/09/2020	D3_17 Sep 20_	60	-	<1	-	46		90	-	<0.1	-	<1	- <1		-	80	<1	-	-	44	<0.04	<1		5	- ().2 -	<1	-	9
kground and Adjacent to MPAR kground and Adjacent to MPAR	D3	26/11/2020 17/03/2021	D3_26 Nov 20_ D3_17 Mar 21	60 110	<10 70	<1 <1	<1 <1	32 63	- <			<0.1 <0.1	-	2 <1	- <1	_	9300 11,200	5000 7280				759 591	<0.04	<1 1	-	5		0.2 - 0.2 -	<1		7 8
ckground and Adjacent to MPAR	D3	24/06/2021	D3_24 Jun 21_	60	<10	<1	<1	61	- <	_		<0.1	-	9	- 1		13,200	9060		- 6	46	600	0.24	<1	-	12		0.2 -	<1		6
	D3	Min.		60	<10	<1	_	_	-	1 <50		+	-	<1 9		<1		80	<1				<0.04		-	_	-	0.2 -			6
	D3	Max. Average	+	73	70 27	<1 0.5	<1 0.5	63	- <			<0.1 0.05			- 1	<1 3 0.5	13200 11233	9060 5355				759 499	0.24	0.63	-		5.7 0).2 - .13 -	<1		7.5

				uminium	luminium (Filtered)	rsenic	rsenic (Filtered)	arium	arium (Filtered) eryllium	oron	oron (Fikered)	admium	admium (Filtered)	rromium rromium (Filtered)	ppper	opper (Filtered)	uo	on (Filtered)	pe	ad (Filtered)	langanese	ianganese (Filtered)	lercury	olybdenum	iolybdenum (Filtered)	ickel	ickel (Filtered)	slenium	elenium (Filtered)	lver ver (Filtered)	JC	nc (Filtered)
				<u>₹</u> μg/L	μg/L	μg/L	μg/L	μg/L				μg/L		b b μg/L μg/L	μg/L	μg/L	<u>2</u> µg/L	<u>≅</u> μg/L	9 μg/L μ		Σ μg/L	Σ μg/L	Σ μg/L	Σ μg/L		Ξ μg/L				g/L µg/L		
ANZECC (2000) or Local Guidelines - Groundwater						24	24	700	700 100	370	370	2	2	5 5	5	5	664	664	5	5 5	5704	5704	0.06	10	10	550.9	550.9	5	5 0.0	.05 0.05	908	908
Purpose	LocCode D4	Sampled_Date-Time		11.500	1	40		12		450		0.4		2	-1			75 000	20			725	40.04	-1		15		-0.2 T		-1	146	
Background and Adjacent to MPAR Background and Adjacent to MPAR	D4	15/07/2020 22/10/2020	D4_15 Jul 20_ D4_22 Oct 20	11,500 10,700	-	48 38	-	13		<50 <50		0.4		2 -	<1	-	-	75,000 54,900	19	-	-	735 714	<0.04	<1 <1		15 13		<0.2		<1 -	146 131	
Background and Adjacent to MPAR	D4	12/11/2020	D4 12 Nov 20	9880	-	26	-	11				0.3		1 -	<1	-	-	63,100		-	-	708	<0.04	<1	-	13		<0.2		<1 -	121	
Background and Adjacent to MPAR	D4	11/02/2021	D4_11 Feb 21_	9710	9270	40	37	12	- 2			0.2	-	2 -	<1	<1	74,800	62,100	18	-	710	661	<0.04	<1	-	13		<0.2		<1 -	120	
Background and Adjacent to MPAR	D4	20/05/2021	D4_20 May 21_	10,800	10,700	44	43	13	- 2			0.2		2 -	<1	1	73,200	65,900	19	_	766	748	<0.04	<1	-	13		<0.2		<1 -	127	
	D4	Min.		9710	9270	26	37		- 2			_		1 -	<1		73200	54900	_	$\overline{}$	710	661	<0.04	<1	-	13		<0.2		<1 -		
	D4	Max. Average	+	11500 10518	10700	48 39	43	13 12	- 2		<50	0.4		1.8 -	<1 0.5	1	74800 74000	75000 64200		$\overline{}$	766 738	748 713	<0.04 0.02	<1 0.5	-	15 13		<0.2 0.1		<1 - 0.5 -	146 129	
Background and Adjacent to MPAR	D5	15/07/2020	D5 15 Jul 20	30	-	2	-	18			+ -	<0.1	-	<1 -	<1	-	-	51,800		-	-	9180	<0.04	<1	-	43		0.3		<1 -	15	_
Background and Adjacent to MPAR	D5	22/10/2020	D5_22 Oct 20_	20	-	<1	-	17		90	-	<0.1	-	<1 -	<1			23,000	<1	_	-	6360	<0.04	<1	-	41		0.3		<1 -	8	
Background and Adjacent to MPAR	D5	12/11/2020	D5_12 Nov 20_	20	-	<1	-	15			-	<0.1	-	<1 -	<1	-	-	20,200	<1	-	-	7120	<0.04	<1	-	38		<0.2		<1 -	8	
Background and Adjacent to MPAR	D5	11/02/2021	D5_11 Feb 21_	30	20	<1	<1	16	- 1			<0.1	-	<1 -	<1	<1	45,000	20,100	12		760	6390	<0.04	<1	-	33		0.3		<1 -	11	
Background and Adjacent to MPAR	D5	20/05/2021	D5_20 May 21_	20	20 20	<1 <1	<1 <1	18 15	- 1			<0.1	-	<1 -	<1	<1	43,000	32,600		_	7050	7020	<0.04	<1	-	36 33		0.2 <0.2		<1 - <1 -	16 8	
	D5 D5	Min. Max.		30	20	2	<1	18	- 1		70 110	<0.1		<1 -	<1 <1	<1	43000 45000	20100 51800	<1		7050	9180	<0.04	<1 <1		43		0.3		<1 -	16	_
	D5	Average		24	-	0.8	-				-	0.05		0.5 -	0.5	-	44000				5905	7214	0.02	0.5	-	38				0.5 -	12	
Background and Adjacent to MPAR	D106	12/08/2020	MPW035285	-	-	2	1		33 -		1180	<0.1		2 <1	<1	<1	22,800	19,800				14,100	<0.04	<1	<1	1190				<1 <1		
ackground and Adjacent to MPAR	D106	11/11/2020	D106_11 Nov 20_	100	<10	1	<1	23	23 <1	1620	1640	0.1	<0.1	<1 <1	8	<1	41,900	33,600	2	<1 1	9,800	19,500	<0.04	<1	-	2100	2020	0.3	<0.2 <	<1 -	213	180
Background and Adjacent to MPAR	D106	17/02/2021	D106_17 Feb 21_	110	<10	2	<1	27	- <1			0.1	-	<1 -	<1	<1	43,900	38,000				23,700	<0.04	<1		2310		0.3		<1 -	236	
Background and Adjacent to MPAR	D106	10/06/2021	D106_10 Jun 21_	1420	<10	4	<1	31	- <1			0.1	-	10 -	5	<1	55,000	25,300				20,400	0.05	<1		2300		0.4		<1 -	226	
	D106	Min. Max.		100 1420	<10 <10	4	<1 1	_	23 <1 33 <1			<0.1 0.1		<1 <1 10 <1	<1 8	<1	22800 55000	19800 38000	<1 3			14100 23700	<0.04 0.05	<1 <1		1190 2310				<1 <1 <1 <1		
	D106	Average		543	5	2.3	0.63		- 0.5					3.3 -	3.5		40900					19425	0.028	0.5	_	_		0.33		0.5 -	207	
Background and Adjacent to MPAR	D107	12/08/2020	MPW035286	-	-	6	5		22 -	5460		1	0.9	5 <1	4	<1	46,900	45,200				25,400	<0.04	<1		2840				<1 <1		
Background and Adjacent to MPAR	D107	12/11/2020	D107_12 Nov 20_	<10	<10	1	<1	-	18 <1			0.8		<1 <1	<1	<1	43,900	36,500	2			17,400	<0.04	<1	_	2270		_		<1 -	344	
Background and Adjacent to MPAR	D107	17/02/2021	D107_17 Feb 21_	10	<10	7	5	20	- <1	5020	5200	0.9	-	<1 -	<1	<1	39,500	38,200	8	- 19	9,700	19,300	<0.04	<1	-	2250	2200	0.4	- <	<1 -	399	
Background and Adjacent to MPAR	D107	10/06/2021	D107_10 Jun 21_	20	<10	4	<1	19	- <1			0.6		<1 -	1	<1	35,200	6800		_		14,200	<0.04	<1		1750		0.2		<1 -	270	
	D107	Min.		<10	<10	1	<1	-	18 <1					<1 <1	_	<1	35200	6800				14200	<0.04		_	1750		_		<1 <1	_	
	D107	Max. Average		20 12	<10 5	4.5	2.8	23	22 <1 - 0.5			0.83	0.9	5 <1 1.6 -	1.5	<1 0.5	46900 41375	45200 31675				25400 19075	<0.04 0.02	<1 0.5	_	2840 2278		0.4		<1 <1 0.5 -	476 372	
Adjacent to MPAR and Downgradient	D1	16/09/2020	D1_16 Sep 20_	300	-	6	-	37				<0.1	-	<1 -	1	-	-	36,100	<1	-		26,100	<0.04	<1		2040		0.7		<1 -	191	
Adjacent to MPAR and Downgradient	D1	25/11/2020	D1_25 Nov 20_	220	<10	7	3	30	- <1			<0.1	-	<1 -	<1	<1	52,300	40,800	<1	- 2		22,600	<0.04	<1	_	2010		0.4		<1 -	188	
Adjacent to MPAR and Downgradient	D1	14/04/2021	D1_14 Apr 21_	10	<10	3	5	25	- <1	2750	2840	<0.1	-	<1 -	<1	<1	55,800	48,700	<1	- 2	3,800	23,000	<0.04	<1	-	1790	1790	0.4	- <	<1 -	163	176
Adjacent to MPAR and Downgradient	D1	23/06/2021	D1_23 Jun 21_	80	<10	6	6	23	- <1			<0.1	-	<1 -	<1	<1	49,900	47,800	<1	_	-	20,100	<0.04	<1	-	1820		<0.2		<1 -	159	
	D1	Min.		10	<10	3	3	23	- <1			<0.1	-	<1 -	<1	<1	49900	36100				20100	<0.04	<1	_	1790		<0.2		<1 -	159	
	D1 D1	Max.		300 153	<10 5	5.5	4.7	37 29	- <1 - 0.5			<0.1 0.05		0.5 -	0.63	<1 0.5	55800 52667	48700 43350	0.5			26100 22950	<0.04 0.02	<1 0.5		2040 1915		0.7		<1 - 0.5 -	191 175	
Adjacent to MPAR and Downgradient	D2	16/07/2020	D2 16 Jul 20	470	-	1	-	36	- 0.5		_	<0.1		<1 -	2	-	-	11,000	- 1		-	2330	<0.04	<1	-	141		0.2		<1 -	76	
Adjacent to MPAR and Downgradient	D2	22/10/2020	D2_22 Oct 20_	700	-	2	-	29	- -	230		<0.1	-	<1 -	2	-	-	4630	4	-	-	1600	<0.04	<1	- 1	104		0.3		<1 -	159	
Adjacent to MPAR and Downgradient	D2	12/11/2020	D2_12 Nov 20_	780	-	<1	-	20	- -	200	-	<0.1	-	2 -	2	-	-	3070	3	-	-	1320	<0.04	<1	-	73		0.3	- <	<1 -	114	
Adjacent to MPAR and Downgradient	D2	12/02/2021	D2_12 Feb 21_	750	600	<1	<1	18	- <1			<0.1		<1 -	4	3	6340	4270	-		959	907	<0.04	<1	- T	51		0.3		<1 -	48	
Adjacent to MPAR and Downgradient	D2	20/05/2021	D2_20 May 21_	650	440	2	1	32	- <1			<0.1		<1 -	3	2	9340	7800		_	1400	1370	<0.04	<1	-	75		0.3		<1 -	80	
	D2 D2	Min. Max.		470 780	600	<1 2	<1 1		- <1 - <1	170 280		<0.1 <0.1		<1 - 2 -	4	3	6340 9340	3070 11000	4	$\overline{}$	959 1400	907 2330	<0.04	<1 <1	-	51 141		0.2		<1 - <1 -		
	D2	Average		670	-	1.2	-		- 1			0.05		0.8 -	2.6	-	7840		3.4	$\overline{}$	_	1505	0.02	0.5	-	89		0.28		0.5 -	95	
Adjacent to MPAR and Downgradient	D8	17/09/2020	D8_17 Sep 20_	210	-	<1	-	40			-	<0.1		<1 -	3	-	-	31			-	206	<0.04	2	-	36		<0.2		<1 -	42	
Adjacent to MPAR and Downgradient	D8	26/11/2020	D8_26 Nov 20_	490	450	<1	<1	27	- <1	<50	<50	<0.1	-	<1 -	3	2	420	180	<1	-	87	72	<0.04	<1	-	28	27	<0.2	- <	<1 -	36	37
djacent to MPAR and Downgradient	D8	15/04/2021	D8_15 Apr 21_	170	40	<1	<1	_	- <1					<1 -	2	2	7880	140	-		566	518	<0.04	<1	-	65		<0.2		<1 -	70	
djacent to MPAR and Downgradient	D8	25/06/2021	D8_25 Jun 21_	120	<10	<1	<1	- 55	- <1			<0.1		<1 -	3	2	219	<50		$\overline{}$	299	269	<0.04	<1	-	50		<0.2		<1 -	71	
	D8	Min. Max.		120 490	<10 450	<1	<1 <1	27 52	- <1 - <1			<0.1 <0.1		<1 -	3	2	219 7880	31 180	<1		87 566	72 518	<0.04	<1 2	-	28 65		<0.2 <0.2		<1 - <1 -	36 71	
	D8	Average		248	165	0.5	0.5	39	- 0.5			0.05		0.5 -	2.8	2	2840	94	0.5	$\overline{}$	317	266	0.02	0.88	-	45		0.1		0.5 -	55	
djacent to MPAR and Downgradient	D9	16/09/2020	D9_16 Sep 20_	100	-	1	-	33				<0.1		<1 -			-	35,100				18,300	0.12			1350				<1 -	_	
Adjacent to MPAR and Downgradient	D9	25/11/2020	D9_25 Nov 20_	820	<10	8	<1	48	- <1		_			1 -	8	<1	67,700	25,300				17,000	0.7	<1		1740		0.7		<1 -	589	
Adjacent to MPAR and Downgradient	D9	14/04/2021	D9_14 Apr 21_	170	<10	2	2	33	- <1		1610	<0.1	-	<1 -	<1		61,300	47,400	<1		8,900	18,900	<0.04	<1	-	1400	1390	0.4		<1 -	102	78
Adjacent to MPAR and Downgradient	D9	23/06/2021	D9_23 Jun 21_	390	<10	5	<1	30	- <1					<1 -	7	<1	65,300	45,400	_			17,500	0.74	<1		1500		0.3		<1 -	237	
	D9	Min.		100	<10	1	<1	30	- <1					<1 -	<1		61300	25300		_		17000	<0.04	<1		1350		0.3		<1 -	93	
	D9 D9	Max. Average		820 370	<10 5	4	1	_	- <1 - 0.5		1620 1603			0.63 -	8		67700 64767	47400 38300	10			18900 17925	0.74	<1 0.5			1750 1607			<1 - 0.5 -	589 255	
						4	1 1													- 1	/20/	1/323	0.4									/2

Metals

KIVI																		Met	als														
				E	um (Filtered)		(Filtered)		(Filtered)		iltered)	ε	m (Filtered)	Ę	ım (Filtered)		(Filtered)		tered)		Itered)	lese	lese (Filtered)		enum	enum (Filtered)		iltered)	E	n (Filtered)		iltered)	Proved
				Alumini	Alumini	Arsenic	Arsenic	Barium	Barium	Boron	Boron (Cadmiu	Cadmiu	Chromi	Chromi	Copper	Copper	Iron	Iron (Fil	Lead	Lead (Fi	Mangar	Mangar	Mercun	Molybd	Molybd	Nickel	Nickel (Seleniu	Seleniu	Silver	Silver (F	Zinc Zinc (Fil
ANZECC (2000) or Local Guidelines - Groundwater				μg/L	μg/L	μg/L 24	μg/L 24	μg/L μ	µg/L µg 700 10			μg/L 2	μg/L 2					μg/L 664	μg/L 664	μg/L 5				μg/L 0.06	μg/L 10	μg/L 10	μg/L 550.9	μg/L 550.9	μg/L 5		μg/L 0.05	μg/L μ 0.05 9	µg/L µg/ 908 90
Purpose	LocCode	Sampled_Date-Time	SampleCode																														
Adjacent to MPAR and Downgradient	D102	12/08/2020	MPW035281	T -	-	5	4	30	28 -	1880	1790	<0.1	<0.1	<1	<1	<1	<1 7	72,700	72,300	<1	<1 21	,800 2	,100 <	<0.04	<1	<1	1880	1830	0.3	<0.2	<1	<1	66 61
Adjacent to MPAR and Downgradient	D102	11/11/2020	D102_11 Nov 20_	40	<10	2	1		26 <	_		<0.1	<0.1			_		58,800	35,100	_				<0.04	<1	-	1800	1720	0.3	0.2	<1	_	48 41
Adjacent to MPAR and Downgradient	D102	18/02/2021	D102_18 Feb 21	90	<10	<1	<1	30	- <								_	52,000	46,900					0.06	<1	-	1900	1800	0.3	-	<1	$\overline{}$	97 92
Adjacent to MPAR and Downgradient	D102	11/06/2021	D102_11 Jun 21_	20	<10	<1	<1	26	- <	_		<0.1	- 1	2		$\overline{}$	_	52,000	25,000	<1			_	<0.04	<1	-	1910	1620	<0.2	-	<1		56 41
,	D102	Min.		20	<10	<1	<1		26 <	_		<0.1	<0.1			$\overline{}$		52000	25000	_				<0.04	<1	<1	1800	1620	<0.2	<0.2	_	_	48 41
	D102	Max.		90	<10	5	4		28 <	_		0.1	<0.1			_		72700	72300	<1				0.06	<1	<1	1910	1830	0.3	0.2	_		97 92
	D102	Average		50	5	2	1.5	28	- 0.		_	0.063	- 1	0.88	- 0	0.63	_	58875	44825	0.5	_			0.03	0.5	-	1873	1743	0.25	-	0.5	$\overline{}$	67 59
Adjacent to MPAR and Downgradient	D103	12/08/2020	MPW035282	-	-	6	6		24 -				<0.1					25,100	24,100	<1				<0.04	<1	<1	1020	977	0.2	<0.2			218 21
Adjacent to MPAR and Downgradient	D103	11/11/2020	D103 11 Nov 20	310	<10	4	<1		19 <:	_		<0.1	<0.1			$\overline{}$	_	24,700	15,800	_			_	<0.04	<1	-	876	812	0.3	<0.2	<1	_	154 11
Adjacent to MPAR and Downgradient	D103	17/02/2021	D103_17 Feb 21_	340	<10	9	4	25	- <:			<0.1	-	<1		_		25,300	20,500	<1				<0.04	<1	-	862	800	0.2	-	<1	_	196 17
Adjacent to MPAR and Downgradient	D103	11/06/2021	D103 11 Jun 21	580	<10	8	1	26	- <:		_		- 1	<1			_	20,400	9950	<1				<0.04	<1	-	792	762	<0.2	-	<1	$\overline{}$	162 13
	D103	Min.		310	<10	4	<1		19 <	_		<0.1	<0.1			-		20400	9950	_				<0.04	<1	<1	792	762	<0.2	<0.2	_	_	154 11
	D103	Max.		580	<10	9	6		24 <			<0.1	<0.1					25300	24100					<0.04	<1	<1	1020	977	0.3	<0.2		$\overline{}$	218 21
	D103	Average		410	5	6.8	2.9	25	- 0.		_	0.05	-	0.88				23875	17588	0.5	_			0.02	0.5	-	888	838	0.2	-	0.5		183 16
Adjacent to MPAR and Downgradient	D104	12/08/2020	MPW035283	-	-	2	2	_	22 -	60	60	<0.1	<0.1					6290	5260	_				<0.04	<1	<1	42	36	<0.2	<0.2	_		49 47
Adjacent to MPAR and Downgradient	D104	11/11/2020	D104 11 Nov 20	260	<10	<1	<1		37 <		60	<0.1	<0.1	_			_	1190	21	_			-	<0.04	<1	-	46	45	<0.2	<0.2	<1	$\overline{}$	68 65
Adjacent to MPAR and Downgradient	D104	18/02/2021	D104_18 Feb 21_	180	<10	2	<1	27	- <		_	<0.1	- 10.1	<1		_		10,800	8780	<1				<0.04	<1	-	93	91	<0.2	- 10.2	<1	_	72 58
Adjacent to MPAR and Downgradient	D104	11/06/2021	D104_11 Jun 21_	20	<10	<1	<1	19	- <		_	<0.1	1 - 1	<1			_	6670	3930	<1				<0.04	<1	-	59	61	<0.2	-	<1	_	46 47
Adjacent to Wi Art and Downgradient	D104	Min.	D104_113um21_	20	<10	<1	<1		22 <		60	<0.1	<0.1	_		-	_	1190	21	-			-	<0.04	<1	<1	42	36	<0.2	<0.2	-	$\overline{}$	46 47
	D104	Max.		260	<10	2	2		37 <	_		<0.1	<0.1			-		10800	8780					<0.04	<1	<1	93	91	<0.2	<0.2	_	_	72 65
	D104			153	5	1.3	0.88	27	- 0.			0.05	\U.1	0.5				6238	4498					0.02	0.5	-	60	58	0.1		0.5		59 54
Adjacent to MPAR and Downgradient	D104	13/08/2020	MPW035284	155	-	1.5	1	_	25 -	_	_	<0.1	<0.1					36,200	35,000					<0.04	<1	<1	764	738	<0.2	<0.2	<1		74 74
Adjacent to MPAR and Downgradient	D105	11/11/2020	D105 11 Nov 20	20	<10	<1	<1		22 <:			<0.1	<0.1	_		-		32,700	19,900					<0.04	<1	\1	709	664	<0.2	<0.2	<1		53 37
Adjacent to MPAR and Downgradient	D105	17/02/2021	D105_17 Feb 21	60	<10	1	1	25	- <		_	<0.1	10.1	<1		-		39,600	33,300					<0.04	<1	-	697	656	<0.2		<1		75 63
Adjacent to MPAR and Downgradient Adjacent to MPAR and Downgradient	D105	11/06/2021	D105_17 Feb 21_ D105_11 Jun 21_	140	<10	1	<1	23	- <		_	<0.1		1				30,100	15,100	<1				<0.04	<1		688	675	<0.2	-	<1	_	64 55
Adjacent to Mr Alt and Downgradient	D105	Min.	D105_113un 21_	20	<10	<1	<1		22 <		_	<0.1	<0.1	<1		-		30100	15100	<1				<0.04	<1	<1	688	656	<0.2	<0.2	_	$\overline{}$	53 37
	D105	Max.		140	<10	1	1		25 <	_		<0.1	<0.1					39600	35000					<0.04	<1	<1	764	738	<0.2	<0.2			75 74
	D105	Average		73	5	0.88	0.75	24	- 0.	_		0.05	\U.1	0.63		-		34650	25825	0.5				0.02	0.5	- 1	715	683	0.1	-	0.5		67 57
Pring waste pand look detection haves	MPGM5-D5	16/07/2020	MPGM5-D5 16 Jul 20	300	-	<10	- 0.75	44	- 0.			3.7	-	<10			-	-	295	<10				<0.04	<10	-	3460	-	5.7	-	<10		531 -
Brine waste pond leak detection bores Brine waste pond leak detection bores	MPGM5-D5	22/10/2020	MPGM5-D5_16 Jul 20_ MPGM5-D5_22 Oct 20_	360	-	<10 6	H -	44				4.6	1	2		17	-	-	563	5	_			<0.04	<10		2910		3.7	-	<10		453 -
Brine waste pond leak detection bores	MPGM5-D5	12/11/2020	MPGM5-D5_22 Oct 20_	310	-	4	H	45				3.5		1	_	12	-	-	764	4	_		_	<0.04	2	-	2580	-	2.3		<1	_	343 -
Brine waste pond leak detection bores	MPGM5-D5	12/02/2021	MPGM5-D5_12 NOV 20_	250	10	2	2	43	- <			2.1	1	<1			6 :	1200	640	2				<0.04	<1	-	1860	1820	1.3	-	<1	_	304 29
Brine waste pond leak detection bores	MPGM5-D5	20/05/2021	MPGM5-D5_12 Feb 21_ MPGM5-D5_20 May 21	180	<10	6	6	48	- <			6	1	3		-		1540	1180	9				0.07	12	-	3680	3420	2.5	-	<1	_	608 57
princ waste pond leak detection bores	MPGM5-D5	Min.	INTEGRAL DO ZO IVIDY ZI	180	<10	2	2	48		L 330		2.1	-	<1				1200	295					<0.04	<1	-	1860	1820	1.3	-	<1		304 29
	MPGM5-D5	Max.		360	10	<10	6	48	- <			6		<10				1540	1180	<10				0.07	12	-	3680	3420	5.7	-	<10		608 57
	MPGM5-D5	Average		280	-	4.6	-	45			_	4	-	2.3				1920	688	5				0.07	4		2898	-	3		1.4	_	448 -
Brine waste pond leak detection bores	MPGM5-D6	16/07/2020	MPGM5-D6 16 Jul 20	120		2	-	24		_		<0.1	1	<1		1			43,600	2				0.06	<1	-	100	-	0.3		<1		52 -
Brine waste pond leak detection bores	MPGM5-D6	22/10/2020	MPGM5-D6_10 Jul 20_	90	H :	1	H -	23		_		<0.1	+ - +	<1		<1	_ +		30,200	<1	_			<0.04	<1		89	-	0.3		<1	-	42 -
Brine waste pond leak detection bores	MPGM5-D6	20/05/2021	MPGM5-D6_20 May 21_	340	<10	3	2	29		L 60		<0.1	-	2		_	<1 4	12,400	41,100	-				<0.04	<1	-	67	64	0.3	-	<1	-	33 29
brine waste pond leak detection boles	MPGM5-D6	Min.	INT GIVIS-DO_ZO IVIAY ZI_	90	<10	1	2	29	- <			<0.1	+ -	<1		-		42,400 42400	30200	<1			-	<0.04	<1	-	67	64	0.3	-	<1	$\overline{}$	33 29
	MPGM5-D6	Max.		340	<10	3	2	29	- <		50	<0.1	+ - +	2		-		42400	43600	6				0.06	<1	-	100	64	0.2	-	<1	_	52 29
	MPGM5-D6	Average	+	183	- <10	2	-	25	- \	_		0.05		1		0.83		-		2.8				0.08	0.5	-	85	-	0.27	-	0.5		42 -
	סט-כואוט־וואו	Average		103				23	- -	3/		1 0.03	-	1	- 0		-	•	30300	2.0	-	- (UUU L	0.033	0.5	- 1	00	-	0.27		0.5	- '	74 -

Appendix H. Hydrographs
Wells Adjacent to MPAR and Background
Annual Environmental Monitoring Report - Water Management and Monitoring
Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project
553983

Appendix H. Hydrographs
Wells Within MPAR / Mine Disturbance Area East of MPAR
Annual Environmental Monitoring Report - Water Management and Monitoring
Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project
553983

Appendix H. Hydrographs
Wells Within Mine Disturbance Area South to South-east of MPAR
Annual Environmental Monitoring Report - Water Management and Monitoring
Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project
553983

Appendix H. Hydrographs
Wells Adjacent MPAR and Downgradient
Annual Environmental Monitoring Report - Water Management and Monitoring
Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project
553983

Appendix H. Hydrographs
Brine Waste Leak Detection Wells
Annual Environmental Monitoring Report - Water Management and Monitoring
Mt Piper Power Station Brine Conditioned Fly Ash Co-Placement Project
0553983

K.1 GWSDAT DATA ASSESSMENT METHODOLOGY

For data processing and the production of the trend evaluation outputs presented in the *Annual Environmental Monitoring Report – Water Management and Monitoring*, ERM used the Shell Ground Water Spatio-Temporal Data Analysis Tool (Shell Global Solutions, 2012). The Shell Ground Water Spatio-Temporal Data Analysis Tool (GWSDAT) is a free-ware application developed to analyse historical trends (both spatially and temporally) of groundwater solute concentrations, but can also be adapted to analyse historical trends for surface water solute concentrations.

Trend analysis of the laboratory analytical data was completed using the Mann-Kendall procedure. The Mann-Kendall method is a non-parametric method and does not require assumptions about the underlying data distribution. The Mann Kendall test is based on the relative magnitude of the data rather than the actual measured values, and is a tool commonly used in the statistical assessment of trends over time for the purpose of evaluating trends in groundwater data.

The p-value presented in the monitoring bore trend plots indicates the level of statistical significance that can be attributed to the trend, with a p-value less than 0.05 indicating a statistically significant trend. A p-value of less than 0.05 relates to a statistical significance of 95%, i.e. if a trend has a p-value of less than 0.05 there is a 95% level of confidence that the data presents an actual trend and not a random distribution of data. Trends with these characteristics, which are considered by the program to be statistically significant, are shown in green text in the trend plots in Appendix L; those that are not statistically significant are shown in red text.

Where no p-value is given on the graphical outputs, a sufficient number of data points were not available to evaluate the significance of trends through the Mann-Kendall test. Concentrations both above and below the laboratory limit of reporting are shown.

It is noted that for the EC and pH trend plots, concentrations are shown as mg/L although the data shown are actually in μ S/cm and pH standard units, respectively. This is because of a limitation of the GWSDAT program.

In addition to the Mann-Kendall test, a linear trend analysis is represented on the plots (using a green line). The trend displays a linear time series trend estimate to the log of historical solute concentrations. Due to different monitoring bores being tested at varying frequencies throughout history, some locations did not have sufficient data points to graphically represent either linear or non-linear trends.

www.erm.com Project No.: 0553983 Client: EnergyAustralia Pty Ltd August 2021 Page K1

ElectricalConductivity (Field) in MPGM5-D6 ElectricalConductivity (Field) in SW3-D Mann-Kendall P.Value= 0.044; Half-Life= 743 days Detectable Data Non-Detect Data OGW Elevation 1e+08 Detectable Data Linear Conc. Trend Non-Detect Data GW Elevation ElectricalConductivity (Field) (ug/I) ElectricalConductivity (Field) (ug/I) 8.7 8.8 8.9 9.0 9.1 9.2 Groundwater Elevation (level) 1e+07 5e+06 1e+06 2e+06 1e+04 ... 2020 2021 2000 2010 2030 2040 2020 Date Date

Sulfate(as SO4) in MPGM5-D6 Mann-Kendall P.Value= 0.0819; Half-Life= 479 days Sulfate(as SO4) in SW3-D Detectable Data Since Conc. Trend GW Elevation Detectable Data Non-Detect Data GW Elevation 8.7 8.8 8.9 9.0 9.1 9.2 Groundwater Elevation (level) 5e+06 Sulfate(as SO4) (ug/I) Sulfate(as SO4) (ug/I) 2e+06 1e-01 1e+00 5e+05 1e-02 2020 2021 2020 2021 Date Date

APPENDIX M	NALCO SAMPLING METHOD AND QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC) PROGRAM

Page 1 of 7

Total Suspended Solids

CA12119 Total Suspended Solids

1. SCOPE & APPLICATION

This document describes determination of total suspended solids in water samples. It is applicable to the Global Analytical and Microbiological (GAM) Services laboratory, Mount Piper site.

2. REFERENCES

a) APHA Standard Methods, for the Examination of Water and Waste Water - Method 2540D

3. **DEFINITIONS**

<u>Suspended Solids:</u> The particulate material retained on a glass fibre filter and dried to constant weight at a specified temperature. Suspended solids may also be called "Non-Filtrable Residues", or "NFR".

Type 1 water: Ultrapure Milli-Q Water as per ASTM D1193-6.

D.I. Water: De-Ionised Water

Blank sample: D.I water sample

4. THEORY

The method for total suspended solids is based on Standard Methods, for the Examination of Water and Waste Water.

A well mixed sample is filtered through a weighed standard glass-fibre filter, the residue is collected on the filter and dried to a constant weight at 103 - 105 °C. The increase in weight of the filter represents the total suspended solids.

5. INTERFERENCES

- Exclude large floating particles or submerged agglomerates of non-homogeneous materials from the sample if it is determined that their inclusion is not representative.
- Limit sample size to no greater than 200 mg residue as excessive residue on the filter may form a waterentrapping crust. In samples where this is the case, reduce the volume filtered.
- Samples with high total dissolved solids need to be thoroughly washed to ensure removal of dissolved material.
- Prolonged filtration times resulting from filter clogging may produce high results owing to increased colloidal materials captured on the clogged filter.

Page 2 of 7

Total Suspended Solids

6. SAFETY NOTES

• General PPE - Labcoat, safety glasses, gloves, protective footwear.

7. EQUIPMENT

- Whatman GF/C filter paper 47mm / 47mm No. 393 Glass Microfiber Filter papers or equivalent
- Tweezers
- Drying oven at 103 105 °C
- Filtration apparatus
- Vacuum source
- Desiccator
- Analytical balance capable of weighing 0.1mg
- Pipette with 10mL or 5mL volume capacity and wide bore pipette tips. CAUTION: 1 mL pipette tips are not to be used.
- Baking trays
- Magnetic Stirrer
- Measuring Cylinder "A grade": 50mL, 100mL, 250 mL, 500mL capacity

8. INSTRUMENT SETTINGS

None.

9. REAGENTS

- Type 1 water
- D.I Water

10. STANDARDS

None.

11. SAMPLE PRESERVATION

- Use resistant glass or plastic bottle, provided that the material in suspension does not adhere to container walls.
- Begin analysis as soon as possible, preferably within 24hrs of sampling and no more than 7 days.

12. PROCEDURE

12.1 Preparation of Filter Papers

The glass fibre filter papers shall be prepared as follows:

Page 3 of 7

Total Suspended Solids

- a) Set up filtration apparatus.
- b) Turn vacuum pump on.
- c) Place filter paper on filtration apparatus wrinkle side up.
- d) Apply vacuum and wash with a minimum of 3 successive 20 mL portions of type 1 water; Continue applying vacuum until all traces of water is removed.
- e) Discard washings.
- f) Remove filter paper from filtration apparatus and transfer to a baking tray.
- g) Dry in an oven at 103 105°C for a minimum of 2 hours.
- h) Cool in desiccator for a minimum of one hour.
- i) Store in desiccator until needed.

<u>Note:</u> Study conducted has shown that the use of a wash bottle to distribute the Type 1 water to prepare the filter papers, is delivering sufficient volumes of Type 1 water as directed in the APHA.

12.2 Sample Analysis

- a) Check the spirit level of the balance (ensure that the bubble is within the circle) before proceeding. Refer to A-6.10 if adjustment is required.
- b) Place filter paper on balance pan.
- c) Record the initial weight of filter paper.
- d) Place filter paper in allocated position of numbered grid template (typically made of cardboard) in sample site order.
- e) Set up filtration apparatus.
- f) Turn vacuum pump on.
- g) Place filter paper on filtration apparatus wrinkle side up and apply vacuum.
- h) Select sample volume according to Table 1. Mount Piper site typically filters large volumes e.g. 250mL and 500mL.

Table 1

Visual Appearance	Sample Volume (mL)
Clear – low turbidity	200-500
Hazy – medium turbidity	100-150
Very Hazy – high turbidity	10-50
Opaque – very high turbidity	<10

- i) If sample bottle contains no air gap, invert the bottle several times and remove 5 mL to create an air gap to allow for more thorough mixing;
 - I. For sample volumes > 10 mL:

Page 4 of 7

Total Suspended Solids

- Vigorously shake the sample and sub-sample a suitable aliquot into a measuring cylinder and transfer it into the filtration apparatus.
- ii. Thoroughly rinse the measuring cylinder and filter paper with with a minimum of three successive 10 mL volumes of D.I water.
- II. For sample volumes < 10 mL or samples with rapidly settling solids:
 - i. Vigorously shake the sample and with continuous stirring using a magnetic stirrer, subsample a suitable aliquot using a pipette or automatic pipette.
 - ii. Wash the filter paper with a minimum of three successive 10 mL volumes of D.I water.
- j) Samples with high total dissolved solids require additional washing to ensure removal of dissolved material. Allow for complete drainage between washings.
- k) Check the cups to ensure they are clean before moving on to next sample. Extra washing of cups is necessary when previous samples have had ash in them.
- I) Record the aliquot.
- m) Remove filter paper with sample residue carefully and place back on allocated position of labelled grid template.
- n) A blank sample is to prepared using D.I water.
- o) Dry the filter papers in a 103 105°C oven for minimum of one hour.
- p) Cool in a desiccator for a minimum of one hour.
- q) Place filter paper on balance pan.
- r) Record the final weight of filter paper. As some evaporation residues readily absorb water rapid weighing is essential.
- s) Perform duplicates according to Quality Control (Table 1 in Section 14).
- t) Once the result has been calculated, reported and authorised, the filter paper may be discarded.

<u>Note</u>: The 1 hour drying period has been validated and shown to achieve constant weight after 1 hour of drying. The repeated drying and cooling of the glass fiber filters as described in Reference (a) is not necessary.

13. TROUBLESHOOTING

Refer to Quality control section and A-2.24 Control of non-conforming test and calibration work. It may be necessary to record an additional comment via addition of a WAT_COMM test code. If unsure, consult senior chemist.

13.1 Sample Matrix Interferences

In the case where a sample matrix is difficult to filter, the following actions shall be taken as necessary:

Page 5 of 7

Total Suspended Solids

- a) A lesser volume shall be chosen based on the filterability of the sample if the limit of reporting is raised for the result above < 2 mg/L. The following WAT_COMM and test comment shall be added: "Limit of reporting raised for Suspended Solids due to sample matrix."
- b) If the sample cannot be tested because of the sample matrix:
 - I. The test shall be cancelled.
 - II. The following WAT_COMM and test comment shall be added: "Suspended Solids could not be determined due to sample matrix.".

14. QUALITY CONTROL

The following quality control is carried out, as outlined in Table 2.

Table 2: Quality Control

QC Parameter	Frequency	Limits	Action QC Criteria Not Satisfied
Blank	One per batch	< 1 mg/L (LOR)	a) Consult senior staff
Duplicate	Every 10 samples or per batch	Results ≤ LOR, allowed RPD between duplicates is 200%.	a) Refer to interference section. b) Consult senior staff.
		Results ≤5 times LOR, allowed RPD between duplicates is 100%.	
		Results 5-10 times LOR allowed RPD between duplicates is 50%.	
		Results >10 times LOR allowed RPD between duplicates is 20%.	

15. CALCULATIONS

15.1 Total Suspended Solids

Calculate the result as milligrams per litre, as follows:

Suspended solids mg/L =	((W ₂ - W ₁) x1000) V
	·

Where:

 W_1 = Weight of filter (in grams)

W₂ = Weight of filter plus dried residue (in grams)

V = Sample Volume (L)

Page 6 of 7

Total Suspended Solids

15.2 Relative Percent Difference (RPD %)

Relative Percent Difference (RPD %) is calculated using the following formula:

$$\frac{(D_1-D_2) \times 100}{((D_1+D_2)/2)}$$

Where:

D₁ = First Sample Value (mg/L) D₂ = Duplicate Value (mg/L)

16. REPORTING

The limit of reporting is 1 mg/L.

The results shall be entered directly into LIMS wherever possible. If this is not possible for any reason, the data shall be recorded on the electronic worksheet (Attachment 1) which is saved on the shared network drive.

The results shall be entered in LIMS as follows:

- a) Log into LIMS and select the "Workstation Backlog" workflow.
- a) Select "GRAVIMTRC" in the workstation column of the table.
- b) Under "Template Name" select SS_MP. This will now generate a new Suspended Solids batch. Record this batch number if using Attachment 1.
- c) Open the selected batch by selecting the batch name.
- d) Save the batch.
- e) Select the "Samples" tab and add a QC sample duplicate (RPD) every 10 samples.
- f) Save the batch.
- g) Select the "Results" tab and fill out all the information required. Once completed, each field must be authorized by clicking on the "Authorized" button (on bottom right of results tab).
- h) Save the batch.
- i) Select the "Samples" tab and the "Options" menu.
- j) Select "Result Entry by Sample" and select "SS" from the drop-down box.
- k) Record data for samples and save.
- I) Calculate all duplicates and save.
- m) The results and QC samples will be authorized by a staff member who is approved to do so and they will close the batch.

Total Suspended Solids

17. UNCERTAINTY OF MEASUREMENT

The following uncertainty of measurement has been calculated for total suspended solids analysis:

Total Suspended Solids	U = <u>+</u> 24.886 %

18. **ATTACHMENTS**

Attachment 1 - Suspended Solids Record Sheet

19. **APPENDIX**

None

ABN: 41 000 424 788

Ecolab/Nalco Global Analytical & Microbiological Services

Quality assurance/quality control program (2021)

The laboratory's Quality assurance/quality control program ensures that sampling activities and analytical data is accurate, reliable and acceptable.

The Quality assurance/quality control program consists of both internal and external measures.

Internal

- Laboratory instrumentation and field equipment are calibrated at the correct intervals, as prescribed in the relevant NATA 'General equipment table'.
- Regular preventative maintenance is carried out on all key laboratory instrumentation and field equipment.
- Trip blanks (where appropriate) are supplied to monitor contamination.
- · Certified reference materials are analysed routinely.
- Duplicate analysis is conducted to check precision.
- Laboratory blanks are analysed to monitor contamination.
- · Quality control checks on media are performed.
- All records and subsequent reports are systematically checked.
- Quality control charts are used to statistically monitor trends in data.
- The laboratory is regularly internally audited.

External

 Ecolab Global Analytical & Microbiological Services participates in regular chemical and microbiological external proficiency testing programs as well as NATA audits as per their surveillance program.

Sampling and data collection

- All sampling is performed by trained personnel in accordance with procedure A-2.18 and relevant parts of Australian Standard 5667, for which NATA accreditation is held.
- Site measurements (DO, pH, turbidity, temperature and conductivity) and sampling observations (water depth) are recorded and reported in accordance with procedure CA12125.

Sample bottles

- Pre-labeled sample containers are used for routine sampling and testing.
- The sample bottles are prepared so that samples are preserved in accordance with Australian Standard 5667.1:1998 and Standard Methods for the Examination of Water and Wastewater, 22nd Edition (APHA).

Delivery of samples

• Eskies and freezer packs are used to maintain the integrity of the samples during transport from the sampling sites to our Global Analytical & Microbiological Services Laboratory.

ERM has over 160 offices across the following countries and territories worldwide

The Netherlands Argentina Australia New Zealand Belgium Norway Brazil Panama Canada Peru Chile Poland China Portugal Colombia Puerto Rico France Romania Germany Russia Ghana Senegal Guyana Singapore Hong Kong South Africa India South Korea Indonesia Spain Ireland Sweden Switzerland Italy Japan Taiwan Kazakhstan Tanzania Thailand Kenya Malaysia UAE UK Mexico Mozambique US Myanmar Vietnam

ERM Sydney

Level 15 309 Kent Street Sydney NSW 2000

T: +61 2 8584 8888 F: +61 2 9299 7502

www.erm.com

